Metamath Proof Explorer


Theorem dmxrncnvep

Description: Domain of the range product with converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmxrncnvep dom ( 𝑅 E ) = ( dom 𝑅 ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 dmxrn dom ( 𝑅 E ) = ( dom 𝑅 ∩ dom E )
2 dmcnvep dom E = ( V ∖ { ∅ } )
3 2 ineq2i ( dom 𝑅 ∩ dom E ) = ( dom 𝑅 ∩ ( V ∖ { ∅ } ) )
4 invdif ( dom 𝑅 ∩ ( V ∖ { ∅ } ) ) = ( dom 𝑅 ∖ { ∅ } )
5 1 3 4 3eqtri dom ( 𝑅 E ) = ( dom 𝑅 ∖ { ∅ } )