Metamath Proof Explorer


Theorem dmcnvepres

Description: Domain of the restricted converse epsilon relation. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmcnvepres dom ( E ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 dmres dom ( E ↾ 𝐴 ) = ( 𝐴 ∩ dom E )
2 dmcnvep dom E = ( V ∖ { ∅ } )
3 2 ineq2i ( 𝐴 ∩ dom E ) = ( 𝐴 ∩ ( V ∖ { ∅ } ) )
4 invdif ( 𝐴 ∩ ( V ∖ { ∅ } ) ) = ( 𝐴 ∖ { ∅ } )
5 1 3 4 3eqtri dom ( E ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } )