Metamath Proof Explorer


Theorem dmuncnvepres

Description: Domain of the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmuncnvepres dom ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) )

Proof

Step Hyp Ref Expression
1 dmres dom ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝐴 ∩ dom ( 𝑅 E ) )
2 dmun dom ( 𝑅 E ) = ( dom 𝑅 ∪ dom E )
3 dmcnvep dom E = ( V ∖ { ∅ } )
4 3 uneq2i ( dom 𝑅 ∪ dom E ) = ( dom 𝑅 ∪ ( V ∖ { ∅ } ) )
5 2 4 eqtri dom ( 𝑅 E ) = ( dom 𝑅 ∪ ( V ∖ { ∅ } ) )
6 5 ineq2i ( 𝐴 ∩ dom ( 𝑅 E ) ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) )
7 1 6 eqtri dom ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) )