Description: Domain of the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmuncnvepres | ⊢ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | ⊢ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ dom ( 𝑅 ∪ ◡ E ) ) | |
| 2 | dmun | ⊢ dom ( 𝑅 ∪ ◡ E ) = ( dom 𝑅 ∪ dom ◡ E ) | |
| 3 | dmcnvep | ⊢ dom ◡ E = ( V ∖ { ∅ } ) | |
| 4 | 3 | uneq2i | ⊢ ( dom 𝑅 ∪ dom ◡ E ) = ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) |
| 5 | 2 4 | eqtri | ⊢ dom ( 𝑅 ∪ ◡ E ) = ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) |
| 6 | 5 | ineq2i | ⊢ ( 𝐴 ∩ dom ( 𝑅 ∪ ◡ E ) ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) |
| 7 | 1 6 | eqtri | ⊢ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) |