Metamath Proof Explorer


Theorem dmuncnvepres

Description: Domain of the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmuncnvepres dom R E -1 A = A dom R V

Proof

Step Hyp Ref Expression
1 dmres dom R E -1 A = A dom R E -1
2 dmun dom R E -1 = dom R dom E -1
3 dmcnvep dom E -1 = V
4 3 uneq2i dom R dom E -1 = dom R V
5 2 4 eqtri dom R E -1 = dom R V
6 5 ineq2i A dom R E -1 = A dom R V
7 1 6 eqtri dom R E -1 A = A dom R V