Metamath Proof Explorer


Theorem dmuncnvepres

Description: Domain of the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmuncnvepres
|- dom ( ( R u. `' _E ) |` A ) = ( A i^i ( dom R u. ( _V \ { (/) } ) ) )

Proof

Step Hyp Ref Expression
1 dmres
 |-  dom ( ( R u. `' _E ) |` A ) = ( A i^i dom ( R u. `' _E ) )
2 dmun
 |-  dom ( R u. `' _E ) = ( dom R u. dom `' _E )
3 dmcnvep
 |-  dom `' _E = ( _V \ { (/) } )
4 3 uneq2i
 |-  ( dom R u. dom `' _E ) = ( dom R u. ( _V \ { (/) } ) )
5 2 4 eqtri
 |-  dom ( R u. `' _E ) = ( dom R u. ( _V \ { (/) } ) )
6 5 ineq2i
 |-  ( A i^i dom ( R u. `' _E ) ) = ( A i^i ( dom R u. ( _V \ { (/) } ) ) )
7 1 6 eqtri
 |-  dom ( ( R u. `' _E ) |` A ) = ( A i^i ( dom R u. ( _V \ { (/) } ) ) )