| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmuncnvepres |
|- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A i^i ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) ) |
| 2 |
|
dmxrncnvep |
|- dom ( R |X. `' _E ) = ( dom R \ { (/) } ) |
| 3 |
2
|
uneq1i |
|- ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) = ( ( dom R \ { (/) } ) u. ( _V \ { (/) } ) ) |
| 4 |
|
difundir |
|- ( ( dom R u. _V ) \ { (/) } ) = ( ( dom R \ { (/) } ) u. ( _V \ { (/) } ) ) |
| 5 |
|
unv |
|- ( dom R u. _V ) = _V |
| 6 |
5
|
difeq1i |
|- ( ( dom R u. _V ) \ { (/) } ) = ( _V \ { (/) } ) |
| 7 |
3 4 6
|
3eqtr2i |
|- ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) = ( _V \ { (/) } ) |
| 8 |
7
|
ineq2i |
|- ( A i^i ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) ) = ( A i^i ( _V \ { (/) } ) ) |
| 9 |
|
invdif |
|- ( A i^i ( _V \ { (/) } ) ) = ( A \ { (/) } ) |
| 10 |
1 8 9
|
3eqtri |
|- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A \ { (/) } ) |