Metamath Proof Explorer


Theorem dmxrnuncnvepres

Description: Domain of the range Cartesian product with the converse epsilon relation combined with the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmxrnuncnvepres dom ( ( ( 𝑅 E ) ∪ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 dmuncnvepres dom ( ( ( 𝑅 E ) ∪ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom ( 𝑅 E ) ∪ ( V ∖ { ∅ } ) ) )
2 dmxrncnvep dom ( 𝑅 E ) = ( dom 𝑅 ∖ { ∅ } )
3 2 uneq1i ( dom ( 𝑅 E ) ∪ ( V ∖ { ∅ } ) ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) )
4 difundir ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) )
5 unv ( dom 𝑅 ∪ V ) = V
6 5 difeq1i ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( V ∖ { ∅ } )
7 3 4 6 3eqtr2i ( dom ( 𝑅 E ) ∪ ( V ∖ { ∅ } ) ) = ( V ∖ { ∅ } )
8 7 ineq2i ( 𝐴 ∩ ( dom ( 𝑅 E ) ∪ ( V ∖ { ∅ } ) ) ) = ( 𝐴 ∩ ( V ∖ { ∅ } ) )
9 invdif ( 𝐴 ∩ ( V ∖ { ∅ } ) ) = ( 𝐴 ∖ { ∅ } )
10 1 8 9 3eqtri dom ( ( ( 𝑅 E ) ∪ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } )