| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmuncnvepres |
⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) ) |
| 2 |
|
dmxrncnvep |
⊢ dom ( 𝑅 ⋉ ◡ E ) = ( dom 𝑅 ∖ { ∅ } ) |
| 3 |
2
|
uneq1i |
⊢ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) ) |
| 4 |
|
difundir |
⊢ ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( ( dom 𝑅 ∖ { ∅ } ) ∪ ( V ∖ { ∅ } ) ) |
| 5 |
|
unv |
⊢ ( dom 𝑅 ∪ V ) = V |
| 6 |
5
|
difeq1i |
⊢ ( ( dom 𝑅 ∪ V ) ∖ { ∅ } ) = ( V ∖ { ∅ } ) |
| 7 |
3 4 6
|
3eqtr2i |
⊢ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) = ( V ∖ { ∅ } ) |
| 8 |
7
|
ineq2i |
⊢ ( 𝐴 ∩ ( dom ( 𝑅 ⋉ ◡ E ) ∪ ( V ∖ { ∅ } ) ) ) = ( 𝐴 ∩ ( V ∖ { ∅ } ) ) |
| 9 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ { ∅ } ) ) = ( 𝐴 ∖ { ∅ } ) |
| 10 |
1 8 9
|
3eqtri |
⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } ) |