| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unab |
⊢ ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } ) |
| 3 |
|
dfec2 |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑅 = { 𝑥 ∣ 𝐴 𝑅 𝑥 } ) |
| 4 |
|
dfec2 |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑆 = { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) |
| 5 |
3 4
|
uneq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] 𝑅 ∪ [ 𝐴 ] 𝑆 ) = ( { 𝑥 ∣ 𝐴 𝑅 𝑥 } ∪ { 𝑥 ∣ 𝐴 𝑆 𝑥 } ) ) |
| 6 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ) ) |
| 7 |
6
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ) ) |
| 8 |
|
brun |
⊢ ( 𝐴 ( 𝑅 ∪ 𝑆 ) 𝑥 ↔ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) ↔ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) ) ) |
| 10 |
9
|
eqabdv |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) = { 𝑥 ∣ ( 𝐴 𝑅 𝑥 ∨ 𝐴 𝑆 𝑥 ) } ) |
| 11 |
2 5 10
|
3eqtr4rd |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ∪ 𝑆 ) = ( [ 𝐴 ] 𝑅 ∪ [ 𝐴 ] 𝑆 ) ) |