Metamath Proof Explorer


Theorem ecunres

Description: The restricted union coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion ecunres ( 𝐵𝑉 → [ 𝐵 ] ( ( 𝑅𝑆 ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅𝐴 ) ∪ [ 𝐵 ] ( 𝑆𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 resundir ( ( 𝑅𝑆 ) ↾ 𝐴 ) = ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) )
2 1 eceq2i [ 𝐵 ] ( ( 𝑅𝑆 ) ↾ 𝐴 ) = [ 𝐵 ] ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) )
3 ecun ( 𝐵𝑉 → [ 𝐵 ] ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) ) = ( [ 𝐵 ] ( 𝑅𝐴 ) ∪ [ 𝐵 ] ( 𝑆𝐴 ) ) )
4 2 3 eqtrid ( 𝐵𝑉 → [ 𝐵 ] ( ( 𝑅𝑆 ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅𝐴 ) ∪ [ 𝐵 ] ( 𝑆𝐴 ) ) )