Description: The restricted union coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecunres | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ( ( 𝑅 ∪ 𝑆 ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∪ [ 𝐵 ] ( 𝑆 ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir | ⊢ ( ( 𝑅 ∪ 𝑆 ) ↾ 𝐴 ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑆 ↾ 𝐴 ) ) | |
| 2 | 1 | eceq2i | ⊢ [ 𝐵 ] ( ( 𝑅 ∪ 𝑆 ) ↾ 𝐴 ) = [ 𝐵 ] ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑆 ↾ 𝐴 ) ) |
| 3 | ecun | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑆 ↾ 𝐴 ) ) = ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∪ [ 𝐵 ] ( 𝑆 ↾ 𝐴 ) ) ) | |
| 4 | 2 3 | eqtrid | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ( ( 𝑅 ∪ 𝑆 ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∪ [ 𝐵 ] ( 𝑆 ↾ 𝐴 ) ) ) |