Description: The restricted union with converse epsilon relation coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecuncnvepres | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecunres | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∪ [ 𝐵 ] ( ◡ E ↾ 𝐴 ) ) ) | |
| 2 | elecreseq | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) = [ 𝐵 ] 𝑅 ) | |
| 3 | eccnvepres2 | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( ◡ E ↾ 𝐴 ) = 𝐵 ) | |
| 4 | 2 3 | uneq12d | ⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∪ [ 𝐵 ] ( ◡ E ↾ 𝐴 ) ) = ( [ 𝐵 ] 𝑅 ∪ 𝐵 ) ) |
| 5 | 1 4 | eqtrd | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( [ 𝐵 ] 𝑅 ∪ 𝐵 ) ) |
| 6 | uncom | ⊢ ( [ 𝐵 ] 𝑅 ∪ 𝐵 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 ) | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 ) ) |