Metamath Proof Explorer


Theorem ecuncnvepres

Description: The restricted union with converse epsilon relation coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion ecuncnvepres ( 𝐵𝐴 → [ 𝐵 ] ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ecunres ( 𝐵𝐴 → [ 𝐵 ] ( ( 𝑅 E ) ↾ 𝐴 ) = ( [ 𝐵 ] ( 𝑅𝐴 ) ∪ [ 𝐵 ] ( E ↾ 𝐴 ) ) )
2 elecreseq ( 𝐵𝐴 → [ 𝐵 ] ( 𝑅𝐴 ) = [ 𝐵 ] 𝑅 )
3 eccnvepres2 ( 𝐵𝐴 → [ 𝐵 ] ( E ↾ 𝐴 ) = 𝐵 )
4 2 3 uneq12d ( 𝐵𝐴 → ( [ 𝐵 ] ( 𝑅𝐴 ) ∪ [ 𝐵 ] ( E ↾ 𝐴 ) ) = ( [ 𝐵 ] 𝑅𝐵 ) )
5 1 4 eqtrd ( 𝐵𝐴 → [ 𝐵 ] ( ( 𝑅 E ) ↾ 𝐴 ) = ( [ 𝐵 ] 𝑅𝐵 ) )
6 uncom ( [ 𝐵 ] 𝑅𝐵 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 )
7 5 6 eqtrdi ( 𝐵𝐴 → [ 𝐵 ] ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝐵 ∪ [ 𝐵 ] 𝑅 ) )