| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecunres |
|- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( `' _E |` A ) ) ) |
| 2 |
|
elecreseq |
|- ( B e. A -> [ B ] ( R |` A ) = [ B ] R ) |
| 3 |
|
eccnvepres2 |
|- ( B e. A -> [ B ] ( `' _E |` A ) = B ) |
| 4 |
2 3
|
uneq12d |
|- ( B e. A -> ( [ B ] ( R |` A ) u. [ B ] ( `' _E |` A ) ) = ( [ B ] R u. B ) ) |
| 5 |
1 4
|
eqtrd |
|- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( [ B ] R u. B ) ) |
| 6 |
|
uncom |
|- ( [ B ] R u. B ) = ( B u. [ B ] R ) |
| 7 |
5 6
|
eqtrdi |
|- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( B u. [ B ] R ) ) |