Metamath Proof Explorer


Theorem ecunres

Description: The restricted union coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion ecunres
|- ( B e. V -> [ B ] ( ( R u. S ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) )

Proof

Step Hyp Ref Expression
1 resundir
 |-  ( ( R u. S ) |` A ) = ( ( R |` A ) u. ( S |` A ) )
2 1 eceq2i
 |-  [ B ] ( ( R u. S ) |` A ) = [ B ] ( ( R |` A ) u. ( S |` A ) )
3 ecun
 |-  ( B e. V -> [ B ] ( ( R |` A ) u. ( S |` A ) ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) )
4 2 3 eqtrid
 |-  ( B e. V -> [ B ] ( ( R u. S ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) )