Description: The restricted union coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecunres | |- ( B e. V -> [ B ] ( ( R u. S ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir | |- ( ( R u. S ) |` A ) = ( ( R |` A ) u. ( S |` A ) ) |
|
| 2 | 1 | eceq2i | |- [ B ] ( ( R u. S ) |` A ) = [ B ] ( ( R |` A ) u. ( S |` A ) ) |
| 3 | ecun | |- ( B e. V -> [ B ] ( ( R |` A ) u. ( S |` A ) ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) ) |
|
| 4 | 2 3 | eqtrid | |- ( B e. V -> [ B ] ( ( R u. S ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( S |` A ) ) ) |