| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unab |
|- ( { x | A R x } u. { x | A S x } ) = { x | ( A R x \/ A S x ) } |
| 2 |
1
|
a1i |
|- ( A e. V -> ( { x | A R x } u. { x | A S x } ) = { x | ( A R x \/ A S x ) } ) |
| 3 |
|
dfec2 |
|- ( A e. V -> [ A ] R = { x | A R x } ) |
| 4 |
|
dfec2 |
|- ( A e. V -> [ A ] S = { x | A S x } ) |
| 5 |
3 4
|
uneq12d |
|- ( A e. V -> ( [ A ] R u. [ A ] S ) = ( { x | A R x } u. { x | A S x } ) ) |
| 6 |
|
elecALTV |
|- ( ( A e. V /\ x e. _V ) -> ( x e. [ A ] ( R u. S ) <-> A ( R u. S ) x ) ) |
| 7 |
6
|
elvd |
|- ( A e. V -> ( x e. [ A ] ( R u. S ) <-> A ( R u. S ) x ) ) |
| 8 |
|
brun |
|- ( A ( R u. S ) x <-> ( A R x \/ A S x ) ) |
| 9 |
7 8
|
bitrdi |
|- ( A e. V -> ( x e. [ A ] ( R u. S ) <-> ( A R x \/ A S x ) ) ) |
| 10 |
9
|
eqabdv |
|- ( A e. V -> [ A ] ( R u. S ) = { x | ( A R x \/ A S x ) } ) |
| 11 |
2 5 10
|
3eqtr4rd |
|- ( A e. V -> [ A ] ( R u. S ) = ( [ A ] R u. [ A ] S ) ) |