Metamath Proof Explorer


Theorem ecun

Description: The union coset of A . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion ecun A V A R S = A R A S

Proof

Step Hyp Ref Expression
1 unab x | A R x x | A S x = x | A R x A S x
2 1 a1i A V x | A R x x | A S x = x | A R x A S x
3 dfec2 A V A R = x | A R x
4 dfec2 A V A S = x | A S x
5 3 4 uneq12d A V A R A S = x | A R x x | A S x
6 elecALTV A V x V x A R S A R S x
7 6 elvd A V x A R S A R S x
8 brun A R S x A R x A S x
9 7 8 bitrdi A V x A R S A R x A S x
10 9 eqabdv A V A R S = x | A R x A S x
11 2 5 10 3eqtr4rd A V A R S = A R A S