Metamath Proof Explorer


Theorem dmcnvepres

Description: Domain of the restricted converse epsilon relation. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmcnvepres dom E -1 A = A

Proof

Step Hyp Ref Expression
1 dmres dom E -1 A = A dom E -1
2 dmcnvep dom E -1 = V
3 2 ineq2i A dom E -1 = A V
4 invdif A V = A
5 1 3 4 3eqtri dom E -1 A = A