Metamath Proof Explorer


Theorem domnnzr

Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Assertion domnnzr RDomnRNzRing

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid R=R
3 eqid 0R=0R
4 1 2 3 isdomn RDomnRNzRingxBaseRyBaseRxRy=0Rx=0Ry=0R
5 4 simplbi RDomnRNzRing