Metamath Proof Explorer


Theorem domssl

Description: If A is a subset of B and C dominates B , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion domssl ABBCAC

Proof

Step Hyp Ref Expression
1 simpr ABBCBC
2 reldom Rel
3 2 brrelex12i BCBVCV
4 simpl ABBVCVAB
5 ssexg ABBVAV
6 5 adantrr ABBVCVAV
7 simprr ABBVCVCV
8 4 6 7 jca32 ABBVCVABAVCV
9 3 8 sylan2 ABBCABAVCV
10 brdomi BCff:B1-1C
11 f1ssres f:B1-1CABfA:A1-1C
12 vex fV
13 12 resex fAV
14 f1dom4g fAVAVCVfA:A1-1CAC
15 13 14 mp3anl1 AVCVfA:A1-1CAC
16 15 ancoms fA:A1-1CAVCVAC
17 11 16 sylan f:B1-1CABAVCVAC
18 17 expl f:B1-1CABAVCVAC
19 18 exlimiv ff:B1-1CABAVCVAC
20 10 19 syl BCABAVCVAC
21 1 9 20 sylc ABBCAC