Metamath Proof Explorer


Theorem domssr

Description: If C is a superset of B and B dominates A , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion domssr CVBCABAC

Proof

Step Hyp Ref Expression
1 brdomi ABff:A1-1B
2 1 3ad2ant3 CVBCABff:A1-1B
3 simp2 CVBCABBC
4 reldom Rel
5 4 brrelex1i ABAV
6 5 3ad2ant3 CVBCABAV
7 simp1 CVBCABCV
8 3 6 7 jca32 CVBCABBCAVCV
9 f1ss f:A1-1BBCf:A1-1C
10 vex fV
11 f1dom4g fVAVCVf:A1-1CAC
12 10 11 mp3anl1 AVCVf:A1-1CAC
13 12 ancoms f:A1-1CAVCVAC
14 9 13 sylan f:A1-1BBCAVCVAC
15 14 expl f:A1-1BBCAVCVAC
16 15 exlimiv ff:A1-1BBCAVCVAC
17 2 8 16 sylc CVBCABAC