Metamath Proof Explorer


Theorem dral1-o

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). Version of dral1 using ax-c11 . (Contributed by NM, 24-Nov-1994) (New usage is discouraged.)

Ref Expression
Hypothesis dral1-o.1 xx=yφψ
Assertion dral1-o xx=yxφyψ

Proof

Step Hyp Ref Expression
1 dral1-o.1 xx=yφψ
2 hbae-o xx=yxxx=y
3 1 biimpd xx=yφψ
4 2 3 alimdh xx=yxφxψ
5 ax-c11 xx=yxψyψ
6 4 5 syld xx=yxφyψ
7 hbae-o xx=yyxx=y
8 1 biimprd xx=yψφ
9 7 8 alimdh xx=yyψyφ
10 ax-c11 yy=xyφxφ
11 10 aecoms-o xx=yyφxφ
12 9 11 syld xx=yyψxφ
13 6 12 impbid xx=yxφyψ