Metamath Proof Explorer


Theorem dvds0

Description: Any integer divides 0. Theorem 1.1(g) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvds0 NN0

Proof

Step Hyp Ref Expression
1 zcn NN
2 1 mul02d N0 N=0
3 0z 0
4 dvds0lem 0N00 N=0N0
5 4 ex 0N00 N=0N0
6 3 3 5 mp3an13 N0 N=0N0
7 2 6 mpd NN0