Metamath Proof Explorer


Theorem dvdsrcl

Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
Assertion dvdsrcl X˙YXB

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 eqid R=R
4 1 2 3 dvdsr X˙YXBxBxRX=Y
5 4 simplbi X˙YXB