Metamath Proof Explorer


Theorem dvelimalcasei

Description: Eliminate a disjoint variable condition from a universally quantified statement using cases. Inference form of dvelimalcased . (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses dvelimalcasei.1 ¬ x x = y x φ
dvelimalcasei.2 ¬ x x = y z χ
dvelimalcasei.3 ¬ x x = y z = x φ χ
dvelimalcasei.4 x x = y ψ χ
dvelimalcasei.5 z φ
dvelimalcasei.6 x ψ
Assertion dvelimalcasei x χ

Proof

Step Hyp Ref Expression
1 dvelimalcasei.1 ¬ x x = y x φ
2 dvelimalcasei.2 ¬ x x = y z χ
3 dvelimalcasei.3 ¬ x x = y z = x φ χ
4 dvelimalcasei.4 x x = y ψ χ
5 dvelimalcasei.5 z φ
6 dvelimalcasei.6 x ψ
7 nftru x
8 nfvd ¬ x x = y z
9 1 adantl ¬ x x = y x φ
10 2 adantl ¬ x x = y z χ
11 3 adantl ¬ x x = y z = x φ χ
12 4 adantl x x = y ψ χ
13 5 a1i z φ
14 6 a1i x ψ
15 7 8 9 10 11 12 13 14 dvelimalcased x χ
16 15 mptru x χ