Metamath Proof Explorer


Theorem dvelimalcasei

Description: Eliminate a disjoint variable condition from a universally quantified statement using cases. Inference form of dvelimalcased . (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses dvelimalcasei.1
|- ( -. A. x x = y -> F/ x ph )
dvelimalcasei.2
|- ( -. A. x x = y -> F/ z ch )
dvelimalcasei.3
|- ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) )
dvelimalcasei.4
|- ( A. x x = y -> ( ps -> ch ) )
dvelimalcasei.5
|- A. z ph
dvelimalcasei.6
|- A. x ps
Assertion dvelimalcasei
|- A. x ch

Proof

Step Hyp Ref Expression
1 dvelimalcasei.1
 |-  ( -. A. x x = y -> F/ x ph )
2 dvelimalcasei.2
 |-  ( -. A. x x = y -> F/ z ch )
3 dvelimalcasei.3
 |-  ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) )
4 dvelimalcasei.4
 |-  ( A. x x = y -> ( ps -> ch ) )
5 dvelimalcasei.5
 |-  A. z ph
6 dvelimalcasei.6
 |-  A. x ps
7 nftru
 |-  F/ x T.
8 nfvd
 |-  ( -. A. x x = y -> F/ z T. )
9 1 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> F/ x ph )
10 2 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> F/ z ch )
11 3 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> ( z = x -> ( ph -> ch ) ) )
12 4 adantl
 |-  ( ( T. /\ A. x x = y ) -> ( ps -> ch ) )
13 5 a1i
 |-  ( T. -> A. z ph )
14 6 a1i
 |-  ( T. -> A. x ps )
15 7 8 9 10 11 12 13 14 dvelimalcased
 |-  ( T. -> A. x ch )
16 15 mptru
 |-  A. x ch