Step |
Hyp |
Ref |
Expression |
1 |
|
dvelimexcased.1 |
|- F/ x ph |
2 |
|
dvelimexcased.2 |
|- ( -. A. x x = y -> F/ z ph ) |
3 |
|
dvelimexcased.3 |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
4 |
|
dvelimexcased.4 |
|- ( ( ph /\ -. A. x x = y ) -> F/ z th ) |
5 |
|
dvelimexcased.5 |
|- ( ( ph /\ -. A. x x = y ) -> ( z = x -> ( ps -> th ) ) ) |
6 |
|
dvelimexcased.6 |
|- ( ( ph /\ A. x x = y ) -> ( ch -> th ) ) |
7 |
|
dvelimexcased.7 |
|- ( ph -> E. z ps ) |
8 |
|
dvelimexcased.8 |
|- ( ph -> E. x ch ) |
9 |
|
nfa1 |
|- F/ x A. x x = y |
10 |
1 9
|
nfan |
|- F/ x ( ph /\ A. x x = y ) |
11 |
10 6
|
eximd |
|- ( ( ph /\ A. x x = y ) -> ( E. x ch -> E. x th ) ) |
12 |
11
|
ex |
|- ( ph -> ( A. x x = y -> ( E. x ch -> E. x th ) ) ) |
13 |
8 12
|
mpid |
|- ( ph -> ( A. x x = y -> E. x th ) ) |
14 |
|
nfv |
|- F/ z -. A. x x = y |
15 |
14 2
|
nfan1c |
|- F/ z ( ph /\ -. A. x x = y ) |
16 |
|
nfna1 |
|- F/ x -. A. x x = y |
17 |
1 16
|
nfan |
|- F/ x ( ph /\ -. A. x x = y ) |
18 |
15 17 3 4 5
|
cbvex1v |
|- ( ( ph /\ -. A. x x = y ) -> ( E. z ps -> E. x th ) ) |
19 |
18
|
ex |
|- ( ph -> ( -. A. x x = y -> ( E. z ps -> E. x th ) ) ) |
20 |
7 19
|
mpid |
|- ( ph -> ( -. A. x x = y -> E. x th ) ) |
21 |
13 20
|
pm2.61d |
|- ( ph -> E. x th ) |