Metamath Proof Explorer


Theorem dvelimexcased

Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses dvelimexcased.1
|- F/ x ph
dvelimexcased.2
|- ( -. A. x x = y -> F/ z ph )
dvelimexcased.3
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps )
dvelimexcased.4
|- ( ( ph /\ -. A. x x = y ) -> F/ z th )
dvelimexcased.5
|- ( ( ph /\ -. A. x x = y ) -> ( z = x -> ( ps -> th ) ) )
dvelimexcased.6
|- ( ( ph /\ A. x x = y ) -> ( ch -> th ) )
dvelimexcased.7
|- ( ph -> E. z ps )
dvelimexcased.8
|- ( ph -> E. x ch )
Assertion dvelimexcased
|- ( ph -> E. x th )

Proof

Step Hyp Ref Expression
1 dvelimexcased.1
 |-  F/ x ph
2 dvelimexcased.2
 |-  ( -. A. x x = y -> F/ z ph )
3 dvelimexcased.3
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps )
4 dvelimexcased.4
 |-  ( ( ph /\ -. A. x x = y ) -> F/ z th )
5 dvelimexcased.5
 |-  ( ( ph /\ -. A. x x = y ) -> ( z = x -> ( ps -> th ) ) )
6 dvelimexcased.6
 |-  ( ( ph /\ A. x x = y ) -> ( ch -> th ) )
7 dvelimexcased.7
 |-  ( ph -> E. z ps )
8 dvelimexcased.8
 |-  ( ph -> E. x ch )
9 nfa1
 |-  F/ x A. x x = y
10 1 9 nfan
 |-  F/ x ( ph /\ A. x x = y )
11 10 6 eximd
 |-  ( ( ph /\ A. x x = y ) -> ( E. x ch -> E. x th ) )
12 11 ex
 |-  ( ph -> ( A. x x = y -> ( E. x ch -> E. x th ) ) )
13 8 12 mpid
 |-  ( ph -> ( A. x x = y -> E. x th ) )
14 nfv
 |-  F/ z -. A. x x = y
15 14 2 nfan1c
 |-  F/ z ( ph /\ -. A. x x = y )
16 nfna1
 |-  F/ x -. A. x x = y
17 1 16 nfan
 |-  F/ x ( ph /\ -. A. x x = y )
18 15 17 3 4 5 cbvex1v
 |-  ( ( ph /\ -. A. x x = y ) -> ( E. z ps -> E. x th ) )
19 18 ex
 |-  ( ph -> ( -. A. x x = y -> ( E. z ps -> E. x th ) ) )
20 7 19 mpid
 |-  ( ph -> ( -. A. x x = y -> E. x th ) )
21 13 20 pm2.61d
 |-  ( ph -> E. x th )