Metamath Proof Explorer


Theorem nfan1c

Description: Variant of nfan and commuted form of nfan1 . (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses nfan1c.1
|- F/ x ph
nfan1c.2
|- ( ph -> F/ x ps )
Assertion nfan1c
|- F/ x ( ps /\ ph )

Proof

Step Hyp Ref Expression
1 nfan1c.1
 |-  F/ x ph
2 nfan1c.2
 |-  ( ph -> F/ x ps )
3 1 2 nfan1
 |-  F/ x ( ph /\ ps )
4 ancom
 |-  ( ( ph /\ ps ) <-> ( ps /\ ph ) )
5 4 nfbii
 |-  ( F/ x ( ph /\ ps ) <-> F/ x ( ps /\ ph ) )
6 3 5 mpbi
 |-  F/ x ( ps /\ ph )