Metamath Proof Explorer


Theorem cbvex1v

Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses cbvex1v.1
|- F/ x ph
cbvex1v.2
|- F/ y ph
cbvex1v.3
|- ( ph -> F/ y ps )
cbvex1v.4
|- ( ph -> F/ x ch )
cbvex1v.5
|- ( ph -> ( x = y -> ( ps -> ch ) ) )
Assertion cbvex1v
|- ( ph -> ( E. x ps -> E. y ch ) )

Proof

Step Hyp Ref Expression
1 cbvex1v.1
 |-  F/ x ph
2 cbvex1v.2
 |-  F/ y ph
3 cbvex1v.3
 |-  ( ph -> F/ y ps )
4 cbvex1v.4
 |-  ( ph -> F/ x ch )
5 cbvex1v.5
 |-  ( ph -> ( x = y -> ( ps -> ch ) ) )
6 4 nfnd
 |-  ( ph -> F/ x -. ch )
7 3 nfnd
 |-  ( ph -> F/ y -. ps )
8 equcomi
 |-  ( y = x -> x = y )
9 con3
 |-  ( ( ps -> ch ) -> ( -. ch -> -. ps ) )
10 8 5 9 syl56
 |-  ( ph -> ( y = x -> ( -. ch -> -. ps ) ) )
11 2 1 6 7 10 cbv1v
 |-  ( ph -> ( A. y -. ch -> A. x -. ps ) )
12 11 con3d
 |-  ( ph -> ( -. A. x -. ps -> -. A. y -. ch ) )
13 df-ex
 |-  ( E. x ps <-> -. A. x -. ps )
14 df-ex
 |-  ( E. y ch <-> -. A. y -. ch )
15 12 13 14 3imtr4g
 |-  ( ph -> ( E. x ps -> E. y ch ) )