Step |
Hyp |
Ref |
Expression |
1 |
|
cbvex1v.1 |
|- F/ x ph |
2 |
|
cbvex1v.2 |
|- F/ y ph |
3 |
|
cbvex1v.3 |
|- ( ph -> F/ y ps ) |
4 |
|
cbvex1v.4 |
|- ( ph -> F/ x ch ) |
5 |
|
cbvex1v.5 |
|- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
6 |
4
|
nfnd |
|- ( ph -> F/ x -. ch ) |
7 |
3
|
nfnd |
|- ( ph -> F/ y -. ps ) |
8 |
|
equcomi |
|- ( y = x -> x = y ) |
9 |
|
con3 |
|- ( ( ps -> ch ) -> ( -. ch -> -. ps ) ) |
10 |
8 5 9
|
syl56 |
|- ( ph -> ( y = x -> ( -. ch -> -. ps ) ) ) |
11 |
2 1 6 7 10
|
cbv1v |
|- ( ph -> ( A. y -. ch -> A. x -. ps ) ) |
12 |
11
|
con3d |
|- ( ph -> ( -. A. x -. ps -> -. A. y -. ch ) ) |
13 |
|
df-ex |
|- ( E. x ps <-> -. A. x -. ps ) |
14 |
|
df-ex |
|- ( E. y ch <-> -. A. y -. ch ) |
15 |
12 13 14
|
3imtr4g |
|- ( ph -> ( E. x ps -> E. y ch ) ) |