Step |
Hyp |
Ref |
Expression |
1 |
|
cbvex1v.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cbvex1v.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
cbvex1v.3 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) |
4 |
|
cbvex1v.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
5 |
|
cbvex1v.5 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) ) |
6 |
4
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑥 ¬ 𝜒 ) |
7 |
3
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑦 ¬ 𝜓 ) |
8 |
|
equcomi |
⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) |
9 |
|
con3 |
⊢ ( ( 𝜓 → 𝜒 ) → ( ¬ 𝜒 → ¬ 𝜓 ) ) |
10 |
8 5 9
|
syl56 |
⊢ ( 𝜑 → ( 𝑦 = 𝑥 → ( ¬ 𝜒 → ¬ 𝜓 ) ) ) |
11 |
2 1 6 7 10
|
cbv1v |
⊢ ( 𝜑 → ( ∀ 𝑦 ¬ 𝜒 → ∀ 𝑥 ¬ 𝜓 ) ) |
12 |
11
|
con3d |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ¬ 𝜓 → ¬ ∀ 𝑦 ¬ 𝜒 ) ) |
13 |
|
df-ex |
⊢ ( ∃ 𝑥 𝜓 ↔ ¬ ∀ 𝑥 ¬ 𝜓 ) |
14 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜒 ↔ ¬ ∀ 𝑦 ¬ 𝜒 ) |
15 |
12 13 14
|
3imtr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑦 𝜒 ) ) |