Metamath Proof Explorer


Theorem cbvex1v

Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses cbvex1v.1 𝑥 𝜑
cbvex1v.2 𝑦 𝜑
cbvex1v.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
cbvex1v.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
cbvex1v.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion cbvex1v ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvex1v.1 𝑥 𝜑
2 cbvex1v.2 𝑦 𝜑
3 cbvex1v.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
4 cbvex1v.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 cbvex1v.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
6 4 nfnd ( 𝜑 → Ⅎ 𝑥 ¬ 𝜒 )
7 3 nfnd ( 𝜑 → Ⅎ 𝑦 ¬ 𝜓 )
8 equcomi ( 𝑦 = 𝑥𝑥 = 𝑦 )
9 con3 ( ( 𝜓𝜒 ) → ( ¬ 𝜒 → ¬ 𝜓 ) )
10 8 5 9 syl56 ( 𝜑 → ( 𝑦 = 𝑥 → ( ¬ 𝜒 → ¬ 𝜓 ) ) )
11 2 1 6 7 10 cbv1v ( 𝜑 → ( ∀ 𝑦 ¬ 𝜒 → ∀ 𝑥 ¬ 𝜓 ) )
12 11 con3d ( 𝜑 → ( ¬ ∀ 𝑥 ¬ 𝜓 → ¬ ∀ 𝑦 ¬ 𝜒 ) )
13 df-ex ( ∃ 𝑥 𝜓 ↔ ¬ ∀ 𝑥 ¬ 𝜓 )
14 df-ex ( ∃ 𝑦 𝜒 ↔ ¬ ∀ 𝑦 ¬ 𝜒 )
15 12 13 14 3imtr4g ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑦 𝜒 ) )