Metamath Proof Explorer


Theorem cbvex1v

Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses cbvex1v.1 x φ
cbvex1v.2 y φ
cbvex1v.3 φ y ψ
cbvex1v.4 φ x χ
cbvex1v.5 φ x = y ψ χ
Assertion cbvex1v φ x ψ y χ

Proof

Step Hyp Ref Expression
1 cbvex1v.1 x φ
2 cbvex1v.2 y φ
3 cbvex1v.3 φ y ψ
4 cbvex1v.4 φ x χ
5 cbvex1v.5 φ x = y ψ χ
6 4 nfnd φ x ¬ χ
7 3 nfnd φ y ¬ ψ
8 equcomi y = x x = y
9 con3 ψ χ ¬ χ ¬ ψ
10 8 5 9 syl56 φ y = x ¬ χ ¬ ψ
11 2 1 6 7 10 cbv1v φ y ¬ χ x ¬ ψ
12 11 con3d φ ¬ x ¬ ψ ¬ y ¬ χ
13 df-ex x ψ ¬ x ¬ ψ
14 df-ex y χ ¬ y ¬ χ
15 12 13 14 3imtr4g φ x ψ y χ