| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvelimalcased.1 |
|- F/ x ph |
| 2 |
|
dvelimalcased.2 |
|- ( -. A. x x = y -> F/ z ph ) |
| 3 |
|
dvelimalcased.3 |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 4 |
|
dvelimalcased.4 |
|- ( ( ph /\ -. A. x x = y ) -> F/ z th ) |
| 5 |
|
dvelimalcased.5 |
|- ( ( ph /\ -. A. x x = y ) -> ( z = x -> ( ps -> th ) ) ) |
| 6 |
|
dvelimalcased.6 |
|- ( ( ph /\ A. x x = y ) -> ( ch -> th ) ) |
| 7 |
|
dvelimalcased.7 |
|- ( ph -> A. z ps ) |
| 8 |
|
dvelimalcased.8 |
|- ( ph -> A. x ch ) |
| 9 |
|
nfa1 |
|- F/ x A. x x = y |
| 10 |
1 9
|
nfan |
|- F/ x ( ph /\ A. x x = y ) |
| 11 |
10 6
|
alimd |
|- ( ( ph /\ A. x x = y ) -> ( A. x ch -> A. x th ) ) |
| 12 |
11
|
ex |
|- ( ph -> ( A. x x = y -> ( A. x ch -> A. x th ) ) ) |
| 13 |
8 12
|
mpid |
|- ( ph -> ( A. x x = y -> A. x th ) ) |
| 14 |
|
nfv |
|- F/ z -. A. x x = y |
| 15 |
14 2
|
nfan1c |
|- F/ z ( ph /\ -. A. x x = y ) |
| 16 |
|
nfna1 |
|- F/ x -. A. x x = y |
| 17 |
1 16
|
nfan |
|- F/ x ( ph /\ -. A. x x = y ) |
| 18 |
15 17 3 4 5
|
cbv1v |
|- ( ( ph /\ -. A. x x = y ) -> ( A. z ps -> A. x th ) ) |
| 19 |
18
|
ex |
|- ( ph -> ( -. A. x x = y -> ( A. z ps -> A. x th ) ) ) |
| 20 |
7 19
|
mpid |
|- ( ph -> ( -. A. x x = y -> A. x th ) ) |
| 21 |
13 20
|
pm2.61d |
|- ( ph -> A. x th ) |