Metamath Proof Explorer


Theorem dvelimexcasei

Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. Inference form of dvelimexcased . See axnulg for an example of its use. (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses dvelimexcasei.1
|- ( -. A. x x = y -> F/ x ph )
dvelimexcasei.2
|- ( -. A. x x = y -> F/ z ch )
dvelimexcasei.3
|- ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) )
dvelimexcasei.4
|- ( A. x x = y -> ( ps -> ch ) )
dvelimexcasei.5
|- E. z ph
dvelimexcasei.6
|- E. x ps
Assertion dvelimexcasei
|- E. x ch

Proof

Step Hyp Ref Expression
1 dvelimexcasei.1
 |-  ( -. A. x x = y -> F/ x ph )
2 dvelimexcasei.2
 |-  ( -. A. x x = y -> F/ z ch )
3 dvelimexcasei.3
 |-  ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) )
4 dvelimexcasei.4
 |-  ( A. x x = y -> ( ps -> ch ) )
5 dvelimexcasei.5
 |-  E. z ph
6 dvelimexcasei.6
 |-  E. x ps
7 nftru
 |-  F/ x T.
8 nfvd
 |-  ( -. A. x x = y -> F/ z T. )
9 1 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> F/ x ph )
10 2 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> F/ z ch )
11 3 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> ( z = x -> ( ph -> ch ) ) )
12 4 adantl
 |-  ( ( T. /\ A. x x = y ) -> ( ps -> ch ) )
13 5 a1i
 |-  ( T. -> E. z ph )
14 6 a1i
 |-  ( T. -> E. x ps )
15 7 8 9 10 11 12 13 14 dvelimexcased
 |-  ( T. -> E. x ch )
16 15 mptru
 |-  E. x ch