Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. Inference form of dvelimexcased . See axnulg for an example of its use. (Contributed by BTernaryTau, 31-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvelimexcasei.1 | |- ( -. A. x x = y -> F/ x ph ) |
|
dvelimexcasei.2 | |- ( -. A. x x = y -> F/ z ch ) |
||
dvelimexcasei.3 | |- ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) ) |
||
dvelimexcasei.4 | |- ( A. x x = y -> ( ps -> ch ) ) |
||
dvelimexcasei.5 | |- E. z ph |
||
dvelimexcasei.6 | |- E. x ps |
||
Assertion | dvelimexcasei | |- E. x ch |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimexcasei.1 | |- ( -. A. x x = y -> F/ x ph ) |
|
2 | dvelimexcasei.2 | |- ( -. A. x x = y -> F/ z ch ) |
|
3 | dvelimexcasei.3 | |- ( -. A. x x = y -> ( z = x -> ( ph -> ch ) ) ) |
|
4 | dvelimexcasei.4 | |- ( A. x x = y -> ( ps -> ch ) ) |
|
5 | dvelimexcasei.5 | |- E. z ph |
|
6 | dvelimexcasei.6 | |- E. x ps |
|
7 | nftru | |- F/ x T. |
|
8 | nfvd | |- ( -. A. x x = y -> F/ z T. ) |
|
9 | 1 | adantl | |- ( ( T. /\ -. A. x x = y ) -> F/ x ph ) |
10 | 2 | adantl | |- ( ( T. /\ -. A. x x = y ) -> F/ z ch ) |
11 | 3 | adantl | |- ( ( T. /\ -. A. x x = y ) -> ( z = x -> ( ph -> ch ) ) ) |
12 | 4 | adantl | |- ( ( T. /\ A. x x = y ) -> ( ps -> ch ) ) |
13 | 5 | a1i | |- ( T. -> E. z ph ) |
14 | 6 | a1i | |- ( T. -> E. x ps ) |
15 | 7 8 9 10 11 12 13 14 | dvelimexcased | |- ( T. -> E. x ch ) |
16 | 15 | mptru | |- E. x ch |