Step |
Hyp |
Ref |
Expression |
1 |
|
dvelimexcasei.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) |
2 |
|
dvelimexcasei.2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧 𝜒 ) |
3 |
|
dvelimexcasei.3 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑥 → ( 𝜑 → 𝜒 ) ) ) |
4 |
|
dvelimexcasei.4 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) |
5 |
|
dvelimexcasei.5 |
⊢ ∃ 𝑧 𝜑 |
6 |
|
dvelimexcasei.6 |
⊢ ∃ 𝑥 𝜓 |
7 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
8 |
|
nfvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧 ⊤ ) |
9 |
1
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜑 ) |
10 |
2
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑧 𝜒 ) |
11 |
3
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑥 → ( 𝜑 → 𝜒 ) ) ) |
12 |
4
|
adantl |
⊢ ( ( ⊤ ∧ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜓 → 𝜒 ) ) |
13 |
5
|
a1i |
⊢ ( ⊤ → ∃ 𝑧 𝜑 ) |
14 |
6
|
a1i |
⊢ ( ⊤ → ∃ 𝑥 𝜓 ) |
15 |
7 8 9 10 11 12 13 14
|
dvelimexcased |
⊢ ( ⊤ → ∃ 𝑥 𝜒 ) |
16 |
15
|
mptru |
⊢ ∃ 𝑥 𝜒 |