Metamath Proof Explorer


Theorem axnulg

Description: A generalization of ax-nul in which x and y need not be distinct. Note that it is possible to use axc7e to derive elirrv from this theorem, which justifies the dependency on ax-reg . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BTernaryTau, 3-Aug-2025) (New usage is discouraged.)

Ref Expression
Assertion axnulg 𝑥𝑦 ¬ 𝑦𝑥

Proof

Step Hyp Ref Expression
1 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
2 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
3 nfcvd ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑧 )
4 2 3 nfeld ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦𝑧 )
5 4 nfnd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ¬ 𝑦𝑧 )
6 1 5 nfald ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥𝑦 ¬ 𝑦𝑧 )
7 nfvd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧𝑦 ¬ 𝑦𝑥 )
8 dveeq2 ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑧 = 𝑥 → ∀ 𝑦 𝑧 = 𝑥 ) )
9 8 naecoms ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑥 → ∀ 𝑦 𝑧 = 𝑥 ) )
10 elequ2 ( 𝑧 = 𝑥 → ( 𝑦𝑧𝑦𝑥 ) )
11 10 notbid ( 𝑧 = 𝑥 → ( ¬ 𝑦𝑧 ↔ ¬ 𝑦𝑥 ) )
12 11 biimpd ( 𝑧 = 𝑥 → ( ¬ 𝑦𝑧 → ¬ 𝑦𝑥 ) )
13 12 al2imi ( ∀ 𝑦 𝑧 = 𝑥 → ( ∀ 𝑦 ¬ 𝑦𝑧 → ∀ 𝑦 ¬ 𝑦𝑥 ) )
14 9 13 syl6 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑥 → ( ∀ 𝑦 ¬ 𝑦𝑧 → ∀ 𝑦 ¬ 𝑦𝑥 ) ) )
15 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑥 ) )
16 15 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥 ) )
17 16 sps ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝑥𝑥 ↔ ¬ 𝑦𝑥 ) )
18 17 dral1 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝑥𝑥 ↔ ∀ 𝑦 ¬ 𝑦𝑥 ) )
19 18 biimpd ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝑥𝑥 → ∀ 𝑦 ¬ 𝑦𝑥 ) )
20 ax-nul 𝑧𝑦 ¬ 𝑦𝑧
21 elirrv ¬ 𝑥𝑥
22 21 ax-gen 𝑥 ¬ 𝑥𝑥
23 22 exgen 𝑥𝑥 ¬ 𝑥𝑥
24 6 7 14 19 20 23 dvelimexcasei 𝑥𝑦 ¬ 𝑦𝑥