| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 2 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
| 3 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 ) |
| 4 |
2 3
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |
| 5 |
4
|
nfnd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 6 |
1 5
|
nfald |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑧 ) |
| 7 |
|
nfvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
| 8 |
|
dveeq2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑧 = 𝑥 → ∀ 𝑦 𝑧 = 𝑥 ) ) |
| 9 |
8
|
naecoms |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑥 → ∀ 𝑦 𝑧 = 𝑥 ) ) |
| 10 |
|
elequ2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥 ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
| 12 |
11
|
biimpd |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 13 |
12
|
al2imi |
⊢ ( ∀ 𝑦 𝑧 = 𝑥 → ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑧 → ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ) |
| 14 |
9 13
|
syl6 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑥 → ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑧 → ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ) ) |
| 15 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 16 |
15
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
| 17 |
16
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
| 18 |
17
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑥 ↔ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ) |
| 19 |
18
|
biimpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ) |
| 20 |
|
ax-nul |
⊢ ∃ 𝑧 ∀ 𝑦 ¬ 𝑦 ∈ 𝑧 |
| 21 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
| 22 |
21
|
ax-gen |
⊢ ∀ 𝑥 ¬ 𝑥 ∈ 𝑥 |
| 23 |
22
|
exgen |
⊢ ∃ 𝑥 ∀ 𝑥 ¬ 𝑥 ∈ 𝑥 |
| 24 |
6 7 14 19 20 23
|
dvelimexcasei |
⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |