Metamath Proof Explorer


Theorem dvelimf-o

Description: Proof of dvelimh that uses ax-c11 but not ax-c15 , ax-c11n , or ax-12 . Version of dvelimh using ax-c11 instead of axc11 . (Contributed by NM, 12-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimf-o.1 φxφ
dvelimf-o.2 ψzψ
dvelimf-o.3 z=yφψ
Assertion dvelimf-o ¬xx=yψxψ

Proof

Step Hyp Ref Expression
1 dvelimf-o.1 φxφ
2 dvelimf-o.2 ψzψ
3 dvelimf-o.3 z=yφψ
4 hba1-o zz=yφzzz=yφ
5 ax-c11 zz=xzzz=yφxzz=yφ
6 5 aecoms-o xx=zzzz=yφxzz=yφ
7 4 6 syl5 xx=zzz=yφxzz=yφ
8 7 a1d xx=z¬xx=yzz=yφxzz=yφ
9 hbnae-o ¬xx=zz¬xx=z
10 hbnae-o ¬xx=yz¬xx=y
11 9 10 hban ¬xx=z¬xx=yz¬xx=z¬xx=y
12 hbnae-o ¬xx=zx¬xx=z
13 hbnae-o ¬xx=yx¬xx=y
14 12 13 hban ¬xx=z¬xx=yx¬xx=z¬xx=y
15 ax-c9 ¬xx=z¬xx=yz=yxz=y
16 15 imp ¬xx=z¬xx=yz=yxz=y
17 1 a1i ¬xx=z¬xx=yφxφ
18 14 16 17 hbimd ¬xx=z¬xx=yz=yφxz=yφ
19 11 18 hbald ¬xx=z¬xx=yzz=yφxzz=yφ
20 19 ex ¬xx=z¬xx=yzz=yφxzz=yφ
21 8 20 pm2.61i ¬xx=yzz=yφxzz=yφ
22 2 3 equsalh zz=yφψ
23 22 albii xzz=yφxψ
24 21 22 23 3imtr3g ¬xx=yψxψ