Metamath Proof Explorer


Theorem dyadval

Description: Value of the dyadic rational function F . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F=x,y0x2yx+12y
Assertion dyadval AB0AFB=A2BA+12B

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 id x=Ax=A
3 oveq2 y=B2y=2B
4 2 3 oveqan12d x=Ay=Bx2y=A2B
5 oveq1 x=Ax+1=A+1
6 5 3 oveqan12d x=Ay=Bx+12y=A+12B
7 4 6 opeq12d x=Ay=Bx2yx+12y=A2BA+12B
8 opex A2BA+12BV
9 7 1 8 ovmpoa AB0AFB=A2BA+12B