| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|
| 2 |
1
|
dyadval |
|
| 3 |
2
|
fveq2d |
|
| 4 |
|
df-ov |
|
| 5 |
3 4
|
eqtr4di |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
zre |
|
| 8 |
|
2nn |
|
| 9 |
|
nnexpcl |
|
| 10 |
8 9
|
mpan |
|
| 11 |
|
nndivre |
|
| 12 |
7 10 11
|
syl2an |
|
| 13 |
|
peano2re |
|
| 14 |
7 13
|
syl |
|
| 15 |
|
nndivre |
|
| 16 |
14 10 15
|
syl2an |
|
| 17 |
7
|
adantr |
|
| 18 |
17
|
lep1d |
|
| 19 |
17 13
|
syl |
|
| 20 |
10
|
adantl |
|
| 21 |
20
|
nnred |
|
| 22 |
20
|
nngt0d |
|
| 23 |
|
lediv1 |
|
| 24 |
17 19 21 22 23
|
syl112anc |
|
| 25 |
18 24
|
mpbid |
|
| 26 |
|
ovolicc |
|
| 27 |
12 16 25 26
|
syl3anc |
|
| 28 |
19
|
recnd |
|
| 29 |
17
|
recnd |
|
| 30 |
21
|
recnd |
|
| 31 |
20
|
nnne0d |
|
| 32 |
28 29 30 31
|
divsubdird |
|
| 33 |
|
ax-1cn |
|
| 34 |
|
pncan2 |
|
| 35 |
29 33 34
|
sylancl |
|
| 36 |
35
|
oveq1d |
|
| 37 |
32 36
|
eqtr3d |
|
| 38 |
6 27 37
|
3eqtrd |
|