Metamath Proof Explorer


Theorem dyadss

Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015) (Proof shortened by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypothesis dyadmbl.1 F=x,y0x2yx+12y
Assertion dyadss ABC0D0.AFC.BFDDC

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 simpr ABC0D0.AFC.BFD.AFC.BFD
3 simpllr ABC0D0.AFC.BFDB
4 simplrr ABC0D0.AFC.BFDD0
5 1 dyadval BD0BFD=B2DB+12D
6 3 4 5 syl2anc ABC0D0.AFC.BFDBFD=B2DB+12D
7 6 fveq2d ABC0D0.AFC.BFD.BFD=.B2DB+12D
8 df-ov B2DB+12D=.B2DB+12D
9 7 8 eqtr4di ABC0D0.AFC.BFD.BFD=B2DB+12D
10 3 zred ABC0D0.AFC.BFDB
11 2nn 2
12 nnexpcl 2D02D
13 11 4 12 sylancr ABC0D0.AFC.BFD2D
14 10 13 nndivred ABC0D0.AFC.BFDB2D
15 peano2re BB+1
16 10 15 syl ABC0D0.AFC.BFDB+1
17 16 13 nndivred ABC0D0.AFC.BFDB+12D
18 iccssre B2DB+12DB2DB+12D
19 14 17 18 syl2anc ABC0D0.AFC.BFDB2DB+12D
20 9 19 eqsstrd ABC0D0.AFC.BFD.BFD
21 ovolss .AFC.BFD.BFDvol*.AFCvol*.BFD
22 2 20 21 syl2anc ABC0D0.AFC.BFDvol*.AFCvol*.BFD
23 simplll ABC0D0.AFC.BFDA
24 simplrl ABC0D0.AFC.BFDC0
25 1 dyadovol AC0vol*.AFC=12C
26 23 24 25 syl2anc ABC0D0.AFC.BFDvol*.AFC=12C
27 1 dyadovol BD0vol*.BFD=12D
28 3 4 27 syl2anc ABC0D0.AFC.BFDvol*.BFD=12D
29 22 26 28 3brtr3d ABC0D0.AFC.BFD12C12D
30 nnexpcl 2C02C
31 11 24 30 sylancr ABC0D0.AFC.BFD2C
32 nnre 2D2D
33 nngt0 2D0<2D
34 32 33 jca 2D2D0<2D
35 nnre 2C2C
36 nngt0 2C0<2C
37 35 36 jca 2C2C0<2C
38 lerec 2D0<2D2C0<2C2D2C12C12D
39 34 37 38 syl2an 2D2C2D2C12C12D
40 13 31 39 syl2anc ABC0D0.AFC.BFD2D2C12C12D
41 29 40 mpbird ABC0D0.AFC.BFD2D2C
42 2re 2
43 42 a1i ABC0D0.AFC.BFD2
44 4 nn0zd ABC0D0.AFC.BFDD
45 24 nn0zd ABC0D0.AFC.BFDC
46 1lt2 1<2
47 46 a1i ABC0D0.AFC.BFD1<2
48 43 44 45 47 leexp2d ABC0D0.AFC.BFDDC2D2C
49 41 48 mpbird ABC0D0.AFC.BFDDC
50 49 ex ABC0D0.AFC.BFDDC