Metamath Proof Explorer


Theorem dyadss

Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015) (Proof shortened by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypothesis dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
Assertion dyadss A B C 0 D 0 . A F C . B F D D C

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 simpr A B C 0 D 0 . A F C . B F D . A F C . B F D
3 simpllr A B C 0 D 0 . A F C . B F D B
4 simplrr A B C 0 D 0 . A F C . B F D D 0
5 1 dyadval B D 0 B F D = B 2 D B + 1 2 D
6 3 4 5 syl2anc A B C 0 D 0 . A F C . B F D B F D = B 2 D B + 1 2 D
7 6 fveq2d A B C 0 D 0 . A F C . B F D . B F D = . B 2 D B + 1 2 D
8 df-ov B 2 D B + 1 2 D = . B 2 D B + 1 2 D
9 7 8 eqtr4di A B C 0 D 0 . A F C . B F D . B F D = B 2 D B + 1 2 D
10 3 zred A B C 0 D 0 . A F C . B F D B
11 2nn 2
12 nnexpcl 2 D 0 2 D
13 11 4 12 sylancr A B C 0 D 0 . A F C . B F D 2 D
14 10 13 nndivred A B C 0 D 0 . A F C . B F D B 2 D
15 peano2re B B + 1
16 10 15 syl A B C 0 D 0 . A F C . B F D B + 1
17 16 13 nndivred A B C 0 D 0 . A F C . B F D B + 1 2 D
18 iccssre B 2 D B + 1 2 D B 2 D B + 1 2 D
19 14 17 18 syl2anc A B C 0 D 0 . A F C . B F D B 2 D B + 1 2 D
20 9 19 eqsstrd A B C 0 D 0 . A F C . B F D . B F D
21 ovolss . A F C . B F D . B F D vol * . A F C vol * . B F D
22 2 20 21 syl2anc A B C 0 D 0 . A F C . B F D vol * . A F C vol * . B F D
23 simplll A B C 0 D 0 . A F C . B F D A
24 simplrl A B C 0 D 0 . A F C . B F D C 0
25 1 dyadovol A C 0 vol * . A F C = 1 2 C
26 23 24 25 syl2anc A B C 0 D 0 . A F C . B F D vol * . A F C = 1 2 C
27 1 dyadovol B D 0 vol * . B F D = 1 2 D
28 3 4 27 syl2anc A B C 0 D 0 . A F C . B F D vol * . B F D = 1 2 D
29 22 26 28 3brtr3d A B C 0 D 0 . A F C . B F D 1 2 C 1 2 D
30 nnexpcl 2 C 0 2 C
31 11 24 30 sylancr A B C 0 D 0 . A F C . B F D 2 C
32 nnre 2 D 2 D
33 nngt0 2 D 0 < 2 D
34 32 33 jca 2 D 2 D 0 < 2 D
35 nnre 2 C 2 C
36 nngt0 2 C 0 < 2 C
37 35 36 jca 2 C 2 C 0 < 2 C
38 lerec 2 D 0 < 2 D 2 C 0 < 2 C 2 D 2 C 1 2 C 1 2 D
39 34 37 38 syl2an 2 D 2 C 2 D 2 C 1 2 C 1 2 D
40 13 31 39 syl2anc A B C 0 D 0 . A F C . B F D 2 D 2 C 1 2 C 1 2 D
41 29 40 mpbird A B C 0 D 0 . A F C . B F D 2 D 2 C
42 2re 2
43 42 a1i A B C 0 D 0 . A F C . B F D 2
44 4 nn0zd A B C 0 D 0 . A F C . B F D D
45 24 nn0zd A B C 0 D 0 . A F C . B F D C
46 1lt2 1 < 2
47 46 a1i A B C 0 D 0 . A F C . B F D 1 < 2
48 43 44 45 47 leexp2d A B C 0 D 0 . A F C . B F D D C 2 D 2 C
49 41 48 mpbird A B C 0 D 0 . A F C . B F D D C
50 49 ex A B C 0 D 0 . A F C . B F D D C