Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015) (Proof shortened by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dyadmbl.1 | |
|
Assertion | dyadss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dyadmbl.1 | |
|
2 | simpr | |
|
3 | simpllr | |
|
4 | simplrr | |
|
5 | 1 | dyadval | |
6 | 3 4 5 | syl2anc | |
7 | 6 | fveq2d | |
8 | df-ov | |
|
9 | 7 8 | eqtr4di | |
10 | 3 | zred | |
11 | 2nn | |
|
12 | nnexpcl | |
|
13 | 11 4 12 | sylancr | |
14 | 10 13 | nndivred | |
15 | peano2re | |
|
16 | 10 15 | syl | |
17 | 16 13 | nndivred | |
18 | iccssre | |
|
19 | 14 17 18 | syl2anc | |
20 | 9 19 | eqsstrd | |
21 | ovolss | |
|
22 | 2 20 21 | syl2anc | |
23 | simplll | |
|
24 | simplrl | |
|
25 | 1 | dyadovol | |
26 | 23 24 25 | syl2anc | |
27 | 1 | dyadovol | |
28 | 3 4 27 | syl2anc | |
29 | 22 26 28 | 3brtr3d | |
30 | nnexpcl | |
|
31 | 11 24 30 | sylancr | |
32 | nnre | |
|
33 | nngt0 | |
|
34 | 32 33 | jca | |
35 | nnre | |
|
36 | nngt0 | |
|
37 | 35 36 | jca | |
38 | lerec | |
|
39 | 34 37 38 | syl2an | |
40 | 13 31 39 | syl2anc | |
41 | 29 40 | mpbird | |
42 | 2re | |
|
43 | 42 | a1i | |
44 | 4 | nn0zd | |
45 | 24 | nn0zd | |
46 | 1lt2 | |
|
47 | 46 | a1i | |
48 | 43 44 45 47 | leexp2d | |
49 | 41 48 | mpbird | |
50 | 49 | ex | |