Metamath Proof Explorer


Theorem dyaddisjlem

Description: Lemma for dyaddisj . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F=x,y0x2yx+12y
Assertion dyaddisjlem ABC0D0CD.AFC.BFD.BFD.AFC.AFC.BFD=

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 simplll ABC0D0CDA
3 simplrl ABC0D0CDC0
4 1 dyadval AC0AFC=A2CA+12C
5 2 3 4 syl2anc ABC0D0CDAFC=A2CA+12C
6 5 fveq2d ABC0D0CD.AFC=.A2CA+12C
7 df-ov A2CA+12C=.A2CA+12C
8 6 7 eqtr4di ABC0D0CD.AFC=A2CA+12C
9 simpllr ABC0D0CDB
10 simplrr ABC0D0CDD0
11 1 dyadval BD0BFD=B2DB+12D
12 9 10 11 syl2anc ABC0D0CDBFD=B2DB+12D
13 12 fveq2d ABC0D0CD.BFD=.B2DB+12D
14 df-ov B2DB+12D=.B2DB+12D
15 13 14 eqtr4di ABC0D0CD.BFD=B2DB+12D
16 8 15 ineq12d ABC0D0CD.AFC.BFD=A2CA+12CB2DB+12D
17 incom A2CA+12CB2DB+12D=B2DB+12DA2CA+12C
18 16 17 eqtrdi ABC0D0CD.AFC.BFD=B2DB+12DA2CA+12C
19 18 adantr ABC0D0CDB2D<A2C.AFC.BFD=B2DB+12DA2CA+12C
20 2 zred ABC0D0CDA
21 20 recnd ABC0D0CDA
22 2nn 2
23 nnexpcl 2C02C
24 22 3 23 sylancr ABC0D0CD2C
25 24 nncnd ABC0D0CD2C
26 nnexpcl 2D02D
27 22 10 26 sylancr ABC0D0CD2D
28 27 nncnd ABC0D0CD2D
29 24 nnne0d ABC0D0CD2C0
30 21 25 28 29 div13d ABC0D0CDA2C2D=2D2CA
31 2cnd ABC0D0CD2
32 2ne0 20
33 32 a1i ABC0D0CD20
34 3 nn0zd ABC0D0CDC
35 10 nn0zd ABC0D0CDD
36 31 33 34 35 expsubd ABC0D0CD2DC=2D2C
37 2z 2
38 simpr ABC0D0CDCD
39 znn0sub CDCDDC0
40 34 35 39 syl2anc ABC0D0CDCDDC0
41 38 40 mpbid ABC0D0CDDC0
42 zexpcl 2DC02DC
43 37 41 42 sylancr ABC0D0CD2DC
44 36 43 eqeltrrd ABC0D0CD2D2C
45 44 2 zmulcld ABC0D0CD2D2CA
46 30 45 eqeltrd ABC0D0CDA2C2D
47 zltp1le BA2C2DB<A2C2DB+1A2C2D
48 9 46 47 syl2anc ABC0D0CDB<A2C2DB+1A2C2D
49 9 zred ABC0D0CDB
50 20 24 nndivred ABC0D0CDA2C
51 27 nnred ABC0D0CD2D
52 27 nngt0d ABC0D0CD0<2D
53 ltdivmul2 BA2C2D0<2DB2D<A2CB<A2C2D
54 49 50 51 52 53 syl112anc ABC0D0CDB2D<A2CB<A2C2D
55 peano2re BB+1
56 49 55 syl ABC0D0CDB+1
57 ledivmul2 B+1A2C2D0<2DB+12DA2CB+1A2C2D
58 56 50 51 52 57 syl112anc ABC0D0CDB+12DA2CB+1A2C2D
59 48 54 58 3bitr4d ABC0D0CDB2D<A2CB+12DA2C
60 49 27 nndivred ABC0D0CDB2D
61 60 rexrd ABC0D0CDB2D*
62 56 27 nndivred ABC0D0CDB+12D
63 62 rexrd ABC0D0CDB+12D*
64 50 rexrd ABC0D0CDA2C*
65 peano2re AA+1
66 20 65 syl ABC0D0CDA+1
67 66 24 nndivred ABC0D0CDA+12C
68 67 rexrd ABC0D0CDA+12C*
69 ioodisj B2D*B+12D*A2C*A+12C*B+12DA2CB2DB+12DA2CA+12C=
70 69 ex B2D*B+12D*A2C*A+12C*B+12DA2CB2DB+12DA2CA+12C=
71 61 63 64 68 70 syl22anc ABC0D0CDB+12DA2CB2DB+12DA2CA+12C=
72 59 71 sylbid ABC0D0CDB2D<A2CB2DB+12DA2CA+12C=
73 72 imp ABC0D0CDB2D<A2CB2DB+12DA2CA+12C=
74 19 73 eqtrd ABC0D0CDB2D<A2C.AFC.BFD=
75 74 3mix3d ABC0D0CDB2D<A2C.AFC.BFD.BFD.AFC.AFC.BFD=
76 50 adantr ABC0D0CDA2CB2DB2D<A+12CA2C
77 67 adantr ABC0D0CDA2CB2DB2D<A+12CA+12C
78 simprl ABC0D0CDA2CB2DB2D<A+12CA2CB2D
79 66 recnd ABC0D0CDA+1
80 79 25 28 29 div13d ABC0D0CDA+12C2D=2D2CA+1
81 2 peano2zd ABC0D0CDA+1
82 44 81 zmulcld ABC0D0CD2D2CA+1
83 80 82 eqeltrd ABC0D0CDA+12C2D
84 zltp1le BA+12C2DB<A+12C2DB+1A+12C2D
85 9 83 84 syl2anc ABC0D0CDB<A+12C2DB+1A+12C2D
86 ltdivmul2 BA+12C2D0<2DB2D<A+12CB<A+12C2D
87 49 67 51 52 86 syl112anc ABC0D0CDB2D<A+12CB<A+12C2D
88 ledivmul2 B+1A+12C2D0<2DB+12DA+12CB+1A+12C2D
89 56 67 51 52 88 syl112anc ABC0D0CDB+12DA+12CB+1A+12C2D
90 85 87 89 3bitr4d ABC0D0CDB2D<A+12CB+12DA+12C
91 90 biimpa ABC0D0CDB2D<A+12CB+12DA+12C
92 91 adantrl ABC0D0CDA2CB2DB2D<A+12CB+12DA+12C
93 iccss A2CA+12CA2CB2DB+12DA+12CB2DB+12DA2CA+12C
94 76 77 78 92 93 syl22anc ABC0D0CDA2CB2DB2D<A+12CB2DB+12DA2CA+12C
95 12 fveq2d ABC0D0CD.BFD=.B2DB+12D
96 df-ov B2DB+12D=.B2DB+12D
97 95 96 eqtr4di ABC0D0CD.BFD=B2DB+12D
98 97 adantr ABC0D0CDA2CB2DB2D<A+12C.BFD=B2DB+12D
99 5 fveq2d ABC0D0CD.AFC=.A2CA+12C
100 df-ov A2CA+12C=.A2CA+12C
101 99 100 eqtr4di ABC0D0CD.AFC=A2CA+12C
102 101 adantr ABC0D0CDA2CB2DB2D<A+12C.AFC=A2CA+12C
103 94 98 102 3sstr4d ABC0D0CDA2CB2DB2D<A+12C.BFD.AFC
104 103 3mix2d ABC0D0CDA2CB2DB2D<A+12C.AFC.BFD.BFD.AFC.AFC.BFD=
105 104 anassrs ABC0D0CDA2CB2DB2D<A+12C.AFC.BFD.BFD.AFC.AFC.BFD=
106 16 adantr ABC0D0CDA+12CB2D.AFC.BFD=A2CA+12CB2DB+12D
107 ioodisj A2C*A+12C*B2D*B+12D*A+12CB2DA2CA+12CB2DB+12D=
108 107 ex A2C*A+12C*B2D*B+12D*A+12CB2DA2CA+12CB2DB+12D=
109 64 68 61 63 108 syl22anc ABC0D0CDA+12CB2DA2CA+12CB2DB+12D=
110 109 imp ABC0D0CDA+12CB2DA2CA+12CB2DB+12D=
111 106 110 eqtrd ABC0D0CDA+12CB2D.AFC.BFD=
112 111 3mix3d ABC0D0CDA+12CB2D.AFC.BFD.BFD.AFC.AFC.BFD=
113 112 adantlr ABC0D0CDA2CB2DA+12CB2D.AFC.BFD.BFD.AFC.AFC.BFD=
114 60 adantr ABC0D0CDA2CB2DB2D
115 67 adantr ABC0D0CDA2CB2DA+12C
116 105 113 114 115 ltlecasei ABC0D0CDA2CB2D.AFC.BFD.BFD.AFC.AFC.BFD=
117 75 116 60 50 ltlecasei ABC0D0CD.AFC.BFD.BFD.AFC.AFC.BFD=