Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
dyaddisjlem
Next ⟩
dyaddisj
Metamath Proof Explorer
Ascii
Unicode
Theorem
dyaddisjlem
Description:
Lemma for
dyaddisj
.
(Contributed by
Mario Carneiro
, 26-Mar-2015)
Ref
Expression
Hypothesis
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
Assertion
dyaddisjlem
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
Proof
Step
Hyp
Ref
Expression
1
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
2
simplll
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
∈
ℤ
3
simplrl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
C
∈
ℕ
0
4
1
dyadval
⊢
A
∈
ℤ
∧
C
∈
ℕ
0
→
A
F
C
=
A
2
C
A
+
1
2
C
5
2
3
4
syl2anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
F
C
=
A
2
C
A
+
1
2
C
6
5
fveq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
=
.
A
2
C
A
+
1
2
C
7
df-ov
⊢
A
2
C
A
+
1
2
C
=
.
A
2
C
A
+
1
2
C
8
6
7
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
=
A
2
C
A
+
1
2
C
9
simpllr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
∈
ℤ
10
simplrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
D
∈
ℕ
0
11
1
dyadval
⊢
B
∈
ℤ
∧
D
∈
ℕ
0
→
B
F
D
=
B
2
D
B
+
1
2
D
12
9
10
11
syl2anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
F
D
=
B
2
D
B
+
1
2
D
13
12
fveq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
B
F
D
=
.
B
2
D
B
+
1
2
D
14
df-ov
⊢
B
2
D
B
+
1
2
D
=
.
B
2
D
B
+
1
2
D
15
13
14
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
B
F
D
=
B
2
D
B
+
1
2
D
16
8
15
ineq12d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
∩
.
B
F
D
=
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
17
incom
⊢
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
=
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
18
16
17
eqtrdi
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
∩
.
B
F
D
=
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
19
18
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
B
2
D
<
A
2
C
→
.
A
F
C
∩
.
B
F
D
=
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
20
2
zred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
∈
ℝ
21
20
recnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
∈
ℂ
22
2nn
⊢
2
∈
ℕ
23
nnexpcl
⊢
2
∈
ℕ
∧
C
∈
ℕ
0
→
2
C
∈
ℕ
24
22
3
23
sylancr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
C
∈
ℕ
25
24
nncnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
C
∈
ℂ
26
nnexpcl
⊢
2
∈
ℕ
∧
D
∈
ℕ
0
→
2
D
∈
ℕ
27
22
10
26
sylancr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
∈
ℕ
28
27
nncnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
∈
ℂ
29
24
nnne0d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
C
≠
0
30
21
25
28
29
div13d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
2
C
2
D
=
2
D
2
C
A
31
2cnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
∈
ℂ
32
2ne0
⊢
2
≠
0
33
32
a1i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
≠
0
34
3
nn0zd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
C
∈
ℤ
35
10
nn0zd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
D
∈
ℤ
36
31
33
34
35
expsubd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
−
C
=
2
D
2
C
37
2z
⊢
2
∈
ℤ
38
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
C
≤
D
39
znn0sub
⊢
C
∈
ℤ
∧
D
∈
ℤ
→
C
≤
D
↔
D
−
C
∈
ℕ
0
40
34
35
39
syl2anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
C
≤
D
↔
D
−
C
∈
ℕ
0
41
38
40
mpbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
D
−
C
∈
ℕ
0
42
zexpcl
⊢
2
∈
ℤ
∧
D
−
C
∈
ℕ
0
→
2
D
−
C
∈
ℤ
43
37
41
42
sylancr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
−
C
∈
ℤ
44
36
43
eqeltrrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
2
C
∈
ℤ
45
44
2
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
2
C
A
∈
ℤ
46
30
45
eqeltrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
2
C
2
D
∈
ℤ
47
zltp1le
⊢
B
∈
ℤ
∧
A
2
C
2
D
∈
ℤ
→
B
<
A
2
C
2
D
↔
B
+
1
≤
A
2
C
2
D
48
9
46
47
syl2anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
<
A
2
C
2
D
↔
B
+
1
≤
A
2
C
2
D
49
9
zred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
∈
ℝ
50
20
24
nndivred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
2
C
∈
ℝ
51
27
nnred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
∈
ℝ
52
27
nngt0d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
0
<
2
D
53
ltdivmul2
⊢
B
∈
ℝ
∧
A
2
C
∈
ℝ
∧
2
D
∈
ℝ
∧
0
<
2
D
→
B
2
D
<
A
2
C
↔
B
<
A
2
C
2
D
54
49
50
51
52
53
syl112anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
<
A
2
C
↔
B
<
A
2
C
2
D
55
peano2re
⊢
B
∈
ℝ
→
B
+
1
∈
ℝ
56
49
55
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
∈
ℝ
57
ledivmul2
⊢
B
+
1
∈
ℝ
∧
A
2
C
∈
ℝ
∧
2
D
∈
ℝ
∧
0
<
2
D
→
B
+
1
2
D
≤
A
2
C
↔
B
+
1
≤
A
2
C
2
D
58
56
50
51
52
57
syl112anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
2
D
≤
A
2
C
↔
B
+
1
≤
A
2
C
2
D
59
48
54
58
3bitr4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
<
A
2
C
↔
B
+
1
2
D
≤
A
2
C
60
49
27
nndivred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
∈
ℝ
61
60
rexrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
∈
ℝ
*
62
56
27
nndivred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
2
D
∈
ℝ
63
62
rexrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
2
D
∈
ℝ
*
64
50
rexrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
2
C
∈
ℝ
*
65
peano2re
⊢
A
∈
ℝ
→
A
+
1
∈
ℝ
66
20
65
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
∈
ℝ
67
66
24
nndivred
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
2
C
∈
ℝ
68
67
rexrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
2
C
∈
ℝ
*
69
ioodisj
⊢
B
2
D
∈
ℝ
*
∧
B
+
1
2
D
∈
ℝ
*
∧
A
2
C
∈
ℝ
*
∧
A
+
1
2
C
∈
ℝ
*
∧
B
+
1
2
D
≤
A
2
C
→
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
=
∅
70
69
ex
⊢
B
2
D
∈
ℝ
*
∧
B
+
1
2
D
∈
ℝ
*
∧
A
2
C
∈
ℝ
*
∧
A
+
1
2
C
∈
ℝ
*
→
B
+
1
2
D
≤
A
2
C
→
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
=
∅
71
61
63
64
68
70
syl22anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
2
D
≤
A
2
C
→
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
=
∅
72
59
71
sylbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
<
A
2
C
→
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
=
∅
73
72
imp
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
B
2
D
<
A
2
C
→
B
2
D
B
+
1
2
D
∩
A
2
C
A
+
1
2
C
=
∅
74
19
73
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
B
2
D
<
A
2
C
→
.
A
F
C
∩
.
B
F
D
=
∅
75
74
3mix3d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
B
2
D
<
A
2
C
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
76
50
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
A
2
C
∈
ℝ
77
67
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
A
+
1
2
C
∈
ℝ
78
simprl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
A
2
C
≤
B
2
D
79
66
recnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
∈
ℂ
80
79
25
28
29
div13d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
2
C
2
D
=
2
D
2
C
A
+
1
81
2
peano2zd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
∈
ℤ
82
44
81
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
2
D
2
C
A
+
1
∈
ℤ
83
80
82
eqeltrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
2
C
2
D
∈
ℤ
84
zltp1le
⊢
B
∈
ℤ
∧
A
+
1
2
C
2
D
∈
ℤ
→
B
<
A
+
1
2
C
2
D
↔
B
+
1
≤
A
+
1
2
C
2
D
85
9
83
84
syl2anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
<
A
+
1
2
C
2
D
↔
B
+
1
≤
A
+
1
2
C
2
D
86
ltdivmul2
⊢
B
∈
ℝ
∧
A
+
1
2
C
∈
ℝ
∧
2
D
∈
ℝ
∧
0
<
2
D
→
B
2
D
<
A
+
1
2
C
↔
B
<
A
+
1
2
C
2
D
87
49
67
51
52
86
syl112anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
<
A
+
1
2
C
↔
B
<
A
+
1
2
C
2
D
88
ledivmul2
⊢
B
+
1
∈
ℝ
∧
A
+
1
2
C
∈
ℝ
∧
2
D
∈
ℝ
∧
0
<
2
D
→
B
+
1
2
D
≤
A
+
1
2
C
↔
B
+
1
≤
A
+
1
2
C
2
D
89
56
67
51
52
88
syl112anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
+
1
2
D
≤
A
+
1
2
C
↔
B
+
1
≤
A
+
1
2
C
2
D
90
85
87
89
3bitr4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
B
2
D
<
A
+
1
2
C
↔
B
+
1
2
D
≤
A
+
1
2
C
91
90
biimpa
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
B
2
D
<
A
+
1
2
C
→
B
+
1
2
D
≤
A
+
1
2
C
92
91
adantrl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
B
+
1
2
D
≤
A
+
1
2
C
93
iccss
⊢
A
2
C
∈
ℝ
∧
A
+
1
2
C
∈
ℝ
∧
A
2
C
≤
B
2
D
∧
B
+
1
2
D
≤
A
+
1
2
C
→
B
2
D
B
+
1
2
D
⊆
A
2
C
A
+
1
2
C
94
76
77
78
92
93
syl22anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
B
2
D
B
+
1
2
D
⊆
A
2
C
A
+
1
2
C
95
12
fveq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
B
F
D
=
.
B
2
D
B
+
1
2
D
96
df-ov
⊢
B
2
D
B
+
1
2
D
=
.
B
2
D
B
+
1
2
D
97
95
96
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
B
F
D
=
B
2
D
B
+
1
2
D
98
97
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
.
B
F
D
=
B
2
D
B
+
1
2
D
99
5
fveq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
=
.
A
2
C
A
+
1
2
C
100
df-ov
⊢
A
2
C
A
+
1
2
C
=
.
A
2
C
A
+
1
2
C
101
99
100
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
=
A
2
C
A
+
1
2
C
102
101
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
.
A
F
C
=
A
2
C
A
+
1
2
C
103
94
98
102
3sstr4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
.
B
F
D
⊆
.
A
F
C
104
103
3mix2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
105
104
anassrs
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
B
2
D
<
A
+
1
2
C
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
106
16
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
+
1
2
C
≤
B
2
D
→
.
A
F
C
∩
.
B
F
D
=
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
107
ioodisj
⊢
A
2
C
∈
ℝ
*
∧
A
+
1
2
C
∈
ℝ
*
∧
B
2
D
∈
ℝ
*
∧
B
+
1
2
D
∈
ℝ
*
∧
A
+
1
2
C
≤
B
2
D
→
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
=
∅
108
107
ex
⊢
A
2
C
∈
ℝ
*
∧
A
+
1
2
C
∈
ℝ
*
∧
B
2
D
∈
ℝ
*
∧
B
+
1
2
D
∈
ℝ
*
→
A
+
1
2
C
≤
B
2
D
→
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
=
∅
109
64
68
61
63
108
syl22anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
A
+
1
2
C
≤
B
2
D
→
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
=
∅
110
109
imp
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
+
1
2
C
≤
B
2
D
→
A
2
C
A
+
1
2
C
∩
B
2
D
B
+
1
2
D
=
∅
111
106
110
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
+
1
2
C
≤
B
2
D
→
.
A
F
C
∩
.
B
F
D
=
∅
112
111
3mix3d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
+
1
2
C
≤
B
2
D
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
113
112
adantlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
∧
A
+
1
2
C
≤
B
2
D
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
114
60
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
→
B
2
D
∈
ℝ
115
67
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
→
A
+
1
2
C
∈
ℝ
116
105
113
114
115
ltlecasei
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
∧
A
2
C
≤
B
2
D
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅
117
75
116
60
50
ltlecasei
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℕ
0
∧
D
∈
ℕ
0
∧
C
≤
D
→
.
A
F
C
⊆
.
B
F
D
∨
.
B
F
D
⊆
.
A
F
C
∨
.
A
F
C
∩
.
B
F
D
=
∅