Metamath Proof Explorer


Theorem znn0sub

Description: The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub .) (Contributed by NM, 14-Jul-2005)

Ref Expression
Assertion znn0sub MNMNNM0

Proof

Step Hyp Ref Expression
1 zre NN
2 zre MM
3 subge0 NM0NMMN
4 1 2 3 syl2an NM0NMMN
5 zsubcl NMNM
6 5 biantrurd NM0NMNM0NM
7 4 6 bitr3d NMMNNM0NM
8 7 ancoms MNMNNM0NM
9 elnn0z NM0NM0NM
10 8 9 bitr4di MNMNNM0