Metamath Proof Explorer


Theorem ioodisj

Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009)

Ref Expression
Assertion ioodisj A*B*C*D*BCABCD=

Proof

Step Hyp Ref Expression
1 iooss1 B*BCCDBD
2 1 ad4ant24 A*B*C*D*BCCDBD
3 ioossicc BDBD
4 2 3 sstrdi A*B*C*D*BCCDBD
5 sslin CDBDABCDABBD
6 4 5 syl A*B*C*D*BCABCDABBD
7 simplll A*B*C*D*BCA*
8 simpllr A*B*C*D*BCB*
9 simplrr A*B*C*D*BCD*
10 df-ioo .=x*,y*z*|x<zz<y
11 df-icc .=x*,y*z*|xzzy
12 xrlenlt B*w*Bw¬w<B
13 10 11 12 ixxdisj A*B*D*ABBD=
14 7 8 9 13 syl3anc A*B*C*D*BCABBD=
15 6 14 sseqtrd A*B*C*D*BCABCD
16 ss0 ABCDABCD=
17 15 16 syl A*B*C*D*BCABCD=