Metamath Proof Explorer


Theorem ioodisj

Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009)

Ref Expression
Assertion ioodisj
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) )

Proof

Step Hyp Ref Expression
1 iooss1
 |-  ( ( B e. RR* /\ B <_ C ) -> ( C (,) D ) C_ ( B (,) D ) )
2 1 ad4ant24
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( C (,) D ) C_ ( B (,) D ) )
3 ioossicc
 |-  ( B (,) D ) C_ ( B [,] D )
4 2 3 sstrdi
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( C (,) D ) C_ ( B [,] D ) )
5 sslin
 |-  ( ( C (,) D ) C_ ( B [,] D ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ ( ( A (,) B ) i^i ( B [,] D ) ) )
6 4 5 syl
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ ( ( A (,) B ) i^i ( B [,] D ) ) )
7 simplll
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> A e. RR* )
8 simpllr
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> B e. RR* )
9 simplrr
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> D e. RR* )
10 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
11 df-icc
 |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } )
12 xrlenlt
 |-  ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) )
13 10 11 12 ixxdisj
 |-  ( ( A e. RR* /\ B e. RR* /\ D e. RR* ) -> ( ( A (,) B ) i^i ( B [,] D ) ) = (/) )
14 7 8 9 13 syl3anc
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( B [,] D ) ) = (/) )
15 6 14 sseqtrd
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ (/) )
16 ss0
 |-  ( ( ( A (,) B ) i^i ( C (,) D ) ) C_ (/) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) )
17 15 16 syl
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) )