| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
| 2 |
|
simplll |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> A e. ZZ ) |
| 3 |
|
simplrl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> C e. NN0 ) |
| 4 |
1
|
dyadval |
|- ( ( A e. ZZ /\ C e. NN0 ) -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 6 |
5
|
fveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( (,) ` ( A F C ) ) = ( (,) ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) ) |
| 7 |
|
df-ov |
|- ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) = ( (,) ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 8 |
6 7
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( (,) ` ( A F C ) ) = ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 9 |
|
simpllr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> B e. ZZ ) |
| 10 |
|
simplrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> D e. NN0 ) |
| 11 |
1
|
dyadval |
|- ( ( B e. ZZ /\ D e. NN0 ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 13 |
12
|
fveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( (,) ` ( B F D ) ) = ( (,) ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) ) |
| 14 |
|
df-ov |
|- ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) = ( (,) ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 15 |
13 14
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( (,) ` ( B F D ) ) = ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) |
| 16 |
8 15
|
ineq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) ) |
| 17 |
|
incom |
|- ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) = ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 18 |
16 17
|
eqtrdi |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) ) |
| 19 |
18
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) ) |
| 20 |
2
|
zred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> A e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> A e. CC ) |
| 22 |
|
2nn |
|- 2 e. NN |
| 23 |
|
nnexpcl |
|- ( ( 2 e. NN /\ C e. NN0 ) -> ( 2 ^ C ) e. NN ) |
| 24 |
22 3 23
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ C ) e. NN ) |
| 25 |
24
|
nncnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ C ) e. CC ) |
| 26 |
|
nnexpcl |
|- ( ( 2 e. NN /\ D e. NN0 ) -> ( 2 ^ D ) e. NN ) |
| 27 |
22 10 26
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ D ) e. NN ) |
| 28 |
27
|
nncnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ D ) e. CC ) |
| 29 |
24
|
nnne0d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ C ) =/= 0 ) |
| 30 |
21 25 28 29
|
div13d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) = ( ( ( 2 ^ D ) / ( 2 ^ C ) ) x. A ) ) |
| 31 |
|
2cnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> 2 e. CC ) |
| 32 |
|
2ne0 |
|- 2 =/= 0 |
| 33 |
32
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> 2 =/= 0 ) |
| 34 |
3
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> C e. ZZ ) |
| 35 |
10
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> D e. ZZ ) |
| 36 |
31 33 34 35
|
expsubd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ ( D - C ) ) = ( ( 2 ^ D ) / ( 2 ^ C ) ) ) |
| 37 |
|
2z |
|- 2 e. ZZ |
| 38 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> C <_ D ) |
| 39 |
|
znn0sub |
|- ( ( C e. ZZ /\ D e. ZZ ) -> ( C <_ D <-> ( D - C ) e. NN0 ) ) |
| 40 |
34 35 39
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( C <_ D <-> ( D - C ) e. NN0 ) ) |
| 41 |
38 40
|
mpbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( D - C ) e. NN0 ) |
| 42 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ ( D - C ) e. NN0 ) -> ( 2 ^ ( D - C ) ) e. ZZ ) |
| 43 |
37 41 42
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ ( D - C ) ) e. ZZ ) |
| 44 |
36 43
|
eqeltrrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( 2 ^ D ) / ( 2 ^ C ) ) e. ZZ ) |
| 45 |
44 2
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( 2 ^ D ) / ( 2 ^ C ) ) x. A ) e. ZZ ) |
| 46 |
30 45
|
eqeltrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) e. ZZ ) |
| 47 |
|
zltp1le |
|- ( ( B e. ZZ /\ ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) e. ZZ ) -> ( B < ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) <-> ( B + 1 ) <_ ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 48 |
9 46 47
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B < ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) <-> ( B + 1 ) <_ ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 49 |
9
|
zred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> B e. RR ) |
| 50 |
20 24
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A / ( 2 ^ C ) ) e. RR ) |
| 51 |
27
|
nnred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( 2 ^ D ) e. RR ) |
| 52 |
27
|
nngt0d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> 0 < ( 2 ^ D ) ) |
| 53 |
|
ltdivmul2 |
|- ( ( B e. RR /\ ( A / ( 2 ^ C ) ) e. RR /\ ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) -> ( ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) <-> B < ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 54 |
49 50 51 52 53
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) <-> B < ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 55 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
| 56 |
49 55
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B + 1 ) e. RR ) |
| 57 |
|
ledivmul2 |
|- ( ( ( B + 1 ) e. RR /\ ( A / ( 2 ^ C ) ) e. RR /\ ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) <-> ( B + 1 ) <_ ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 58 |
56 50 51 52 57
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) <-> ( B + 1 ) <_ ( ( A / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 59 |
48 54 58
|
3bitr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) <-> ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) ) ) |
| 60 |
49 27
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B / ( 2 ^ D ) ) e. RR ) |
| 61 |
60
|
rexrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B / ( 2 ^ D ) ) e. RR* ) |
| 62 |
56 27
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B + 1 ) / ( 2 ^ D ) ) e. RR ) |
| 63 |
62
|
rexrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B + 1 ) / ( 2 ^ D ) ) e. RR* ) |
| 64 |
50
|
rexrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A / ( 2 ^ C ) ) e. RR* ) |
| 65 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
| 66 |
20 65
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A + 1 ) e. RR ) |
| 67 |
66 24
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) |
| 68 |
67
|
rexrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) |
| 69 |
|
ioodisj |
|- ( ( ( ( ( B / ( 2 ^ D ) ) e. RR* /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR* ) /\ ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) ) /\ ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) ) -> ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) = (/) ) |
| 70 |
69
|
ex |
|- ( ( ( ( B / ( 2 ^ D ) ) e. RR* /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR* ) /\ ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) -> ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) = (/) ) ) |
| 71 |
61 63 64 68 70
|
syl22anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( A / ( 2 ^ C ) ) -> ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) = (/) ) ) |
| 72 |
59 71
|
sylbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) -> ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) = (/) ) ) |
| 73 |
72
|
imp |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) ) -> ( ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) i^i ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) ) = (/) ) |
| 74 |
19 73
|
eqtrd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) |
| 75 |
74
|
3mix3d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( B / ( 2 ^ D ) ) < ( A / ( 2 ^ C ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 76 |
50
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( A / ( 2 ^ C ) ) e. RR ) |
| 77 |
67
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) |
| 78 |
|
simprl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) |
| 79 |
66
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A + 1 ) e. CC ) |
| 80 |
79 25 28 29
|
div13d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) = ( ( ( 2 ^ D ) / ( 2 ^ C ) ) x. ( A + 1 ) ) ) |
| 81 |
2
|
peano2zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( A + 1 ) e. ZZ ) |
| 82 |
44 81
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( 2 ^ D ) / ( 2 ^ C ) ) x. ( A + 1 ) ) e. ZZ ) |
| 83 |
80 82
|
eqeltrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) e. ZZ ) |
| 84 |
|
zltp1le |
|- ( ( B e. ZZ /\ ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) e. ZZ ) -> ( B < ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) <-> ( B + 1 ) <_ ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 85 |
9 83 84
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( B < ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) <-> ( B + 1 ) <_ ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 86 |
|
ltdivmul2 |
|- ( ( B e. RR /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) -> ( ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) <-> B < ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 87 |
49 67 51 52 86
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) <-> B < ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 88 |
|
ledivmul2 |
|- ( ( ( B + 1 ) e. RR /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) <-> ( B + 1 ) <_ ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 89 |
56 67 51 52 88
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) <-> ( B + 1 ) <_ ( ( ( A + 1 ) / ( 2 ^ C ) ) x. ( 2 ^ D ) ) ) ) |
| 90 |
85 87 89
|
3bitr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) <-> ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 91 |
90
|
biimpa |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) |
| 92 |
91
|
adantrl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) |
| 93 |
|
iccss |
|- ( ( ( ( A / ( 2 ^ C ) ) e. RR /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( ( B + 1 ) / ( 2 ^ D ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 94 |
76 77 78 92 93
|
syl22anc |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 95 |
12
|
fveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( [,] ` ( B F D ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) ) |
| 96 |
|
df-ov |
|- ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 97 |
95 96
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) ) |
| 99 |
5
|
fveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( [,] ` ( A F C ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) ) |
| 100 |
|
df-ov |
|- ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 101 |
99 100
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( [,] ` ( A F C ) ) = ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 102 |
101
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( [,] ` ( A F C ) ) = ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 103 |
94 98 102
|
3sstr4d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) ) |
| 104 |
103
|
3mix2d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 105 |
104
|
anassrs |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) /\ ( B / ( 2 ^ D ) ) < ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 106 |
16
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) ) |
| 107 |
|
ioodisj |
|- ( ( ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) /\ ( ( B / ( 2 ^ D ) ) e. RR* /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR* ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) = (/) ) |
| 108 |
107
|
ex |
|- ( ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) /\ ( ( B / ( 2 ^ D ) ) e. RR* /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR* ) ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) -> ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) = (/) ) ) |
| 109 |
64 68 61 63 108
|
syl22anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) -> ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) = (/) ) ) |
| 110 |
109
|
imp |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( ( A / ( 2 ^ C ) ) (,) ( ( A + 1 ) / ( 2 ^ C ) ) ) i^i ( ( B / ( 2 ^ D ) ) (,) ( ( B + 1 ) / ( 2 ^ D ) ) ) ) = (/) ) |
| 111 |
106 110
|
eqtrd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) |
| 112 |
111
|
3mix3d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 113 |
112
|
adantlr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 114 |
60
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( B / ( 2 ^ D ) ) e. RR ) |
| 115 |
67
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) |
| 116 |
105 113 114 115
|
ltlecasei |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) /\ ( A / ( 2 ^ C ) ) <_ ( B / ( 2 ^ D ) ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |
| 117 |
75 116 60 50
|
ltlecasei |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ C <_ D ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) \/ ( [,] ` ( B F D ) ) C_ ( [,] ` ( A F C ) ) \/ ( ( (,) ` ( A F C ) ) i^i ( (,) ` ( B F D ) ) ) = (/) ) ) |