Metamath Proof Explorer


Theorem iccss

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccss ABACDBCDAB

Proof

Step Hyp Ref Expression
1 rexr AA*
2 rexr BB*
3 1 2 anim12i ABA*B*
4 df-icc .=x*,y*z*|xzzy
5 xrletr A*C*w*ACCwAw
6 xrletr w*D*B*wDDBwB
7 4 4 5 6 ixxss12 A*B*ACDBCDAB
8 3 7 sylan ABACDBCDAB