Metamath Proof Explorer


Theorem iccssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo A*B*A<CD<BCDAB

Proof

Step Hyp Ref Expression
1 df-ioo .=x*,y*z*|x<zz<y
2 df-icc .=x*,y*z*|xzzy
3 xrltletr A*C*w*A<CCwA<w
4 xrlelttr w*D*B*wDD<Bw<B
5 1 2 3 4 ixxss12 A*B*A<CD<BCDAB