Metamath Proof Explorer


Theorem iccssre

Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007) (Proof shortened by Paul Chapman, 21-Jan-2008)

Ref Expression
Assertion iccssre ABAB

Proof

Step Hyp Ref Expression
1 elicc2 ABxABxAxxB
2 1 biimp3a ABxABxAxxB
3 2 simp1d ABxABx
4 3 3expia ABxABx
5 4 ssrdv ABAB