Metamath Proof Explorer


Theorem ovolss

Description: The volume of a set is monotone with respect to set inclusion. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolss ABBvol*Avol*B

Proof

Step Hyp Ref Expression
1 eqid y*|f2Aran.fy=supranseq1+absf*<=y*|f2Aran.fy=supranseq1+absf*<
2 eqid y*|f2Bran.fy=supranseq1+absf*<=y*|f2Bran.fy=supranseq1+absf*<
3 1 2 ovolsslem ABBvol*Avol*B