Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ovolsscl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr | |
|
2 | 1 | 3adant3 | |
3 | simp3 | |
|
4 | ovolss | |
|
5 | 4 | 3adant3 | |
6 | ovollecl | |
|
7 | 2 3 5 6 | syl3anc | |