Metamath Proof Explorer


Theorem ovolsscl

Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion ovolsscl ABBvol*Bvol*A

Proof

Step Hyp Ref Expression
1 sstr ABBA
2 1 3adant3 ABBvol*BA
3 simp3 ABBvol*Bvol*B
4 ovolss ABBvol*Avol*B
5 4 3adant3 ABBvol*Bvol*Avol*B
6 ovollecl Avol*Bvol*Avol*Bvol*A
7 2 3 5 6 syl3anc ABBvol*Bvol*A