Metamath Proof Explorer


Theorem ovolssnul

Description: A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion ovolssnul ABBvol*B=0vol*A=0

Proof

Step Hyp Ref Expression
1 ovolss ABBvol*Avol*B
2 1 3adant3 ABBvol*B=0vol*Avol*B
3 simp3 ABBvol*B=0vol*B=0
4 2 3 breqtrd ABBvol*B=0vol*A0
5 sstr ABBA
6 5 3adant3 ABBvol*B=0A
7 ovolge0 A0vol*A
8 6 7 syl ABBvol*B=00vol*A
9 ovolcl Avol*A*
10 6 9 syl ABBvol*B=0vol*A*
11 0xr 0*
12 xrletri3 vol*A*0*vol*A=0vol*A00vol*A
13 10 11 12 sylancl ABBvol*B=0vol*A=0vol*A00vol*A
14 4 8 13 mpbir2and ABBvol*B=0vol*A=0