Metamath Proof Explorer


Theorem ovolge0

Description: The volume of a set is always nonnegative. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion ovolge0 A0vol*A

Proof

Step Hyp Ref Expression
1 ssrab2 y*|f2Aran.fy=supranseq1+absf*<*
2 0xr 0*
3 infxrgelb y*|f2Aran.fy=supranseq1+absf*<*0*0supy*|f2Aran.fy=supranseq1+absf*<*<xy*|f2Aran.fy=supranseq1+absf*<0x
4 1 2 3 mp2an 0supy*|f2Aran.fy=supranseq1+absf*<*<xy*|f2Aran.fy=supranseq1+absf*<0x
5 eqid y*|f2Aran.fy=supranseq1+absf*<=y*|f2Aran.fy=supranseq1+absf*<
6 5 ovolmge0 xy*|f2Aran.fy=supranseq1+absf*<0x
7 4 6 mprgbir 0supy*|f2Aran.fy=supranseq1+absf*<*<
8 5 ovolval Avol*A=supy*|f2Aran.fy=supranseq1+absf*<*<
9 7 8 breqtrrid A0vol*A