Metamath Proof Explorer


Theorem ovolval

Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Hypothesis ovolval.1 M=y*|f2Aran.fy=supranseq1+absf*<
Assertion ovolval Avol*A=supM*<

Proof

Step Hyp Ref Expression
1 ovolval.1 M=y*|f2Aran.fy=supranseq1+absf*<
2 reex V
3 2 elpw2 A𝒫A
4 cleq1lem x=Axran.fy=supranseq1+absf*<Aran.fy=supranseq1+absf*<
5 4 rexbidv x=Af2xran.fy=supranseq1+absf*<f2Aran.fy=supranseq1+absf*<
6 5 rabbidv x=Ay*|f2xran.fy=supranseq1+absf*<=y*|f2Aran.fy=supranseq1+absf*<
7 6 1 eqtr4di x=Ay*|f2xran.fy=supranseq1+absf*<=M
8 7 infeq1d x=Asupy*|f2xran.fy=supranseq1+absf*<*<=supM*<
9 df-ovol vol*=x𝒫supy*|f2xran.fy=supranseq1+absf*<*<
10 xrltso <Or*
11 10 infex supM*<V
12 8 9 11 fvmpt A𝒫vol*A=supM*<
13 3 12 sylbir Avol*A=supM*<