| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
| 2 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) |
| 3 |
|
simpllr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> B e. ZZ ) |
| 4 |
|
simplrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D e. NN0 ) |
| 5 |
1
|
dyadval |
|- ( ( B e. ZZ /\ D e. NN0 ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 7 |
6
|
fveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) ) |
| 8 |
|
df-ov |
|- ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 9 |
7 8
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) ) |
| 10 |
3
|
zred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> B e. RR ) |
| 11 |
|
2nn |
|- 2 e. NN |
| 12 |
|
nnexpcl |
|- ( ( 2 e. NN /\ D e. NN0 ) -> ( 2 ^ D ) e. NN ) |
| 13 |
11 4 12
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ D ) e. NN ) |
| 14 |
10 13
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B / ( 2 ^ D ) ) e. RR ) |
| 15 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
| 16 |
10 15
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B + 1 ) e. RR ) |
| 17 |
16 13
|
nndivred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( B + 1 ) / ( 2 ^ D ) ) e. RR ) |
| 18 |
|
iccssre |
|- ( ( ( B / ( 2 ^ D ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ RR ) |
| 19 |
14 17 18
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ RR ) |
| 20 |
9 19
|
eqsstrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) C_ RR ) |
| 21 |
|
ovolss |
|- ( ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) /\ ( [,] ` ( B F D ) ) C_ RR ) -> ( vol* ` ( [,] ` ( A F C ) ) ) <_ ( vol* ` ( [,] ` ( B F D ) ) ) ) |
| 22 |
2 20 21
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( A F C ) ) ) <_ ( vol* ` ( [,] ` ( B F D ) ) ) ) |
| 23 |
|
simplll |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> A e. ZZ ) |
| 24 |
|
simplrl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> C e. NN0 ) |
| 25 |
1
|
dyadovol |
|- ( ( A e. ZZ /\ C e. NN0 ) -> ( vol* ` ( [,] ` ( A F C ) ) ) = ( 1 / ( 2 ^ C ) ) ) |
| 26 |
23 24 25
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( A F C ) ) ) = ( 1 / ( 2 ^ C ) ) ) |
| 27 |
1
|
dyadovol |
|- ( ( B e. ZZ /\ D e. NN0 ) -> ( vol* ` ( [,] ` ( B F D ) ) ) = ( 1 / ( 2 ^ D ) ) ) |
| 28 |
3 4 27
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( B F D ) ) ) = ( 1 / ( 2 ^ D ) ) ) |
| 29 |
22 26 28
|
3brtr3d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) |
| 30 |
|
nnexpcl |
|- ( ( 2 e. NN /\ C e. NN0 ) -> ( 2 ^ C ) e. NN ) |
| 31 |
11 24 30
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ C ) e. NN ) |
| 32 |
|
nnre |
|- ( ( 2 ^ D ) e. NN -> ( 2 ^ D ) e. RR ) |
| 33 |
|
nngt0 |
|- ( ( 2 ^ D ) e. NN -> 0 < ( 2 ^ D ) ) |
| 34 |
32 33
|
jca |
|- ( ( 2 ^ D ) e. NN -> ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) |
| 35 |
|
nnre |
|- ( ( 2 ^ C ) e. NN -> ( 2 ^ C ) e. RR ) |
| 36 |
|
nngt0 |
|- ( ( 2 ^ C ) e. NN -> 0 < ( 2 ^ C ) ) |
| 37 |
35 36
|
jca |
|- ( ( 2 ^ C ) e. NN -> ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) |
| 38 |
|
lerec |
|- ( ( ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
| 39 |
34 37 38
|
syl2an |
|- ( ( ( 2 ^ D ) e. NN /\ ( 2 ^ C ) e. NN ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
| 40 |
13 31 39
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
| 41 |
29 40
|
mpbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ D ) <_ ( 2 ^ C ) ) |
| 42 |
|
2re |
|- 2 e. RR |
| 43 |
42
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> 2 e. RR ) |
| 44 |
4
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D e. ZZ ) |
| 45 |
24
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> C e. ZZ ) |
| 46 |
|
1lt2 |
|- 1 < 2 |
| 47 |
46
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> 1 < 2 ) |
| 48 |
43 44 45 47
|
leexp2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( D <_ C <-> ( 2 ^ D ) <_ ( 2 ^ C ) ) ) |
| 49 |
41 48
|
mpbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D <_ C ) |
| 50 |
49
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) |